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1 Definition of Limits

1.1 Sequence Limit

Definition 1  a is a constant,for Ve > 0,exist N > 0, If n > N then
la, —al <e
We call it the sequence {a,} converges to a
When using the definition of sequence limits to Prove limits,the main task is to find N .Usually,we

solve|a,, — a| < € to find one N ,and we do not require N to be an integer.Sometimes when it is difficult to
solve,we can scale the inequalities.(Because ke(k > 0) also holds)

[e.g.1.1.1]Prove:

lim — =0
n—oo N

Proof:Let N = é,for Ve >0, AN = é, If n > N ,then

1
la, —0|=—<¢
n
. 1
Therefore lim — =0 g
n—,oo N
[e.g.1.1.2]Prove:
a5 =0
Proof:Let N = %,for Ve >0, AN = é If n > N ,then
\ 0 ! < =<
ap, —0=— < —<e¢
2n
. 1
Therefore lim — =0 U
n—oo 2N

[e.g.1.1.3]Prove:

nk
Therefore lim — =0 g

n—oo 2™
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e.g.1.1.4] If lim,, ,, a,, = a Prove:

. ay+ag+...+an
lim =a
n—oo n

Proof : Because of lim,, ., an, = a, so Ve > 0, AN > 0, If n > N ,then

lan, —al <e
So that:

ar+ag+...+ay gl =
- =

a—a+ax—a+...+a, —a
n

< lay —a|+ |az —a| + ...+ |a, — a

n
_ lar —a| + |lag —a| + ...+ |ay — d] n lay+1 —al+ lani2 —al+ ...+ |a, — a
n n

M (n—N)e
< —+—
n n

< 2e

Therefore lim ~ tazt .. Han
n— 00 n

Note: After studying Stolz’s Theorem, this problem will be very easy.

[e.g.1.1.5(difficult)]Let lim z,, = a, lim y,, = b,z,, = Pin T+ Tl 1 Ry T Inb1p o,
n—00 n—00 n

lim z, = ab
n—oo

Proof: Supposex, = a + an,yn = b+ by,s0lim,, o0 @y, = limy, 00 by, = 0.S0 that

n
- Zk:1 TrYn+1—k
Zpn =

n
_ 2 (@t aR)(0+ burig)
n
ZZ:I abn+1—k + ZZ:l bak + ZZ:l akb71+1—k

=ab+

n

Because of lim,, o @y, = lim,—, 0 b, = 0,80 that Ve > 0, IN = maxz{Ny, No}, If n > N ,then
|an| <&, lby| <e

When n > N ,consider

T b n M
‘Zk—l k| _ ba1+a2+ aN+baN+1+ ta < — +be < K¢
n n n n
In that way
m bpt1— M
M < ‘+b€ <K2€
n n
And

I b
Zkzl AkO0n4+1—k
n

n n
< Zk:l ‘arl;bn+1—k| < MQZk:l |7in+l—k| < Mse

In summary, If n > N then

|z, — ab] <
n

Therefore lim z,, = ab
n—oo

" abpyi_ T b I bpti1—
2 k1 @1k | + [Dop—y bar| + D1 arbnti—kl < (K1 + K» + My)e
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1.2 Function Limit

Definition of Function Limit:

Definition 2 (At the limit of a certain point)SupposeA is a constant,for Ve > 0,there exists § > 0,
If 0 < |z — x| <, then
f(z) — Al <e

The limit of the function at point zgis called A.Record aslim,_,,, f(z) = A

Definition 3  (Towards the limit of positive infinity)SupposeA is a constant,for Ve > 0,there exists
X >0,If z > X | then
|f(z) — Al <e

We say that the limit of the function is A as x approaches +oo.Record aslim,_, . f(z) = A

Definition 4  (Towards the limit of negative infinity)SupposeA is a constant,for Ve > 0,there exists
X >0,If z < —X , then
|flz) — Al <e

We say that the limit of the function is A as x approaches —oco.Record aslim,_, _, f(z) = A

Definition 5  (Towards the limit of infinity)SupposeA is a constant,for Ve > 0,there exists X > 0,
If |z| > X , then
f(z) — Al <e

We say that the limit of the function is A as x approaches co lim,_, f(z) = A
Left and Right Limit:

Definition 6  (Left limit):SupposeA is a constant,for Ve > 0,there exists § > 0, If 0 < zg —z < 4 ,
then
[f(z) — Al <e

The left limit of the function at point zois called A.Record aslim _m & (x)=A

Definition 7  (Right limit):SupposeA is a constant,for Ve > 0,there exists 6 > 0, If 0 < z — 29 < 0
, then
[f(z) — Al <e

The right limit of the function at point x¢is called A.Record aslim it flz)=A

Similar to the limit of a sequence, proving the existence of a function limit by definition also requires
finding dor M.

[e.g.1.2.1]Prove:
limx =1
rz—1
Proof:Ve > 0,there exists § = ¢, If 0 < |z — 1| < ¢ , then
|fla) =1 =]z -1 <e

So thatlim z =1 O
r—1
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[e.g.1.2.2]Prove:

lim sinz = sinxg
Tr—T0o

Proof:Ve > 0,there exists § = ¢, If 0 < |z — zy| < § , then

T+ xo
2

|sinz — sinag| = 2 |cos

— T

.
< 2sin

. T — X0
- [S1n
2

<l|z—wmo| <e

So that lim sinx = sinzg
rT—rxo

2 The Four Basic Arithmetic Operations on Limits

Theorem 1 If lim,, o an = a,lim,,_,,. b, = b,then

lim (a, +b,)=a+b

n—0o0

lim (a, —b,)=a—>b

n—oo

lim a, - b, = ab
n— oo

a, @

2y, =5 0?0

Theorem 2  If lim,_,,, f(z) = a,lim,—_,,, g(x) = b,then

lim (f(z) +g(z) = a+b
lim (f(z) - g(z) =a—b
lim f(2) - g(x) = ab

G v
g;li{rg;lo g(.T) - b (bvg( )7&0)

o can be substituted byxa“, x , +00, —00, 00.

[e.g.2.1]Calculate:

" 1
Solution: If a = 1,then lim a =
n—oo a” + 1 2
If |a|] < 1,then
a” lim,, o0 @™
im = — =0
n—oo a™ + 1 lim,, o (a? + 1)
If |a| > 1,then

n

im = lim —=1
n—oo ™ + 1 n—)ool+a—n
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[e.g.2.2]Calculate:

amtl — 1
I Sy (mnen)
Solution:Because of
a" b= (a—b)(a" P +a" b4 .. D"
So that

o™t 1 (D@2 D) L (@™ tam i+ D) mtd
lim ———— = lim = lim =
a—1 gt — 1 21 (z—1)(@+2m 14+ .. 4+1) a1 (@ +2zm 1404+ 1) n+1

3 Squeeze Theorem(Convergence-Forcing Property)

3.1 convergence-forcing property of sequence limits

Theorem 1 for sequence ay, by, c,,there exists N > 0, If n > N | then b,, < a,, < ¢,,and then

lim b, = lim ¢, = A

n—oo n—oo
So that the lim,,_,o a, = A
[e.g.3.1.1]Calculate:
lim 177
n—oo n

Solution:for all « ,there exist
r—-1<|z] <z

So that
nt—1<|nm|] <nm
namely
1
oL ol
n n
1
as well as lim m — — = m, so that lim M =7
n—oo n n—oo M
[e.g.3.1.2]Calculate:
n k

li —_
nggo]; n2+n+k

Solution:Because of

n(n+1) - k - k Lk 1
AT M < Y < _r
2(n? + 2n) ;n2+2n_;n2+n+k_;n2+n 2

and
) n(n+1) 1
lim ———~=—
n—oo 2(n? 4 2n) 2

n k 1
So that li 27:—
© anlnéok:ln2+n+k 2
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[e.g.3.1.3(difficult)]Calculate:

Solution:Noticed that:

n? 6n2 3 2 6n
So that
nk? R k21 1 - k2 k2 11
2o s rwmer \w e 2w ) et e
k=1 k=1 k=1 k=1
Because of
2 k2 k2 ~ k3
;(n2+k_n2) — n?(n? + k)
and n n n
k3 k3 k3
Z 22 Z 2( 2 < Z 22
= n?(n?+n)  nP(n®+k)  nP(n?+1)
and
iki’) _ nZ(n + 1)2
o 4
k=1
So that
- k - k3 " k? 1

1 =1 1 ==

oo Z n?(n? + k) oo kzz:l n?(n? +n) o Z n?(n?+1) 4
Therefore

3.2 The Squeeze Theorem for Limits of Functions

Theorem 2  for function f(x),g(x),h(z),there existsd > 0, If 0 < |z — zg| < 6 , then g(x) <
f(x) < h(x), and then

lim g(z) = lim h(z) = A

r—rx0o Tr—>To

So that thenlim, ., f(z) = A

To use the squeeze theorem for limits of functions,The key is to find appropriateg(z) and h(z).
[e.g.3.2.1]Prove:

lim =1
z—0 T
Proof: If > 0 ,Because of
3
r— — <sinx <z
So that ) )
1 x” _sinz _ 1
6 =~ = —
So that
lim 2%
r—0t &
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Similarly, it can be proved

lim %
z—0- X
So thatlim,_,q % =1 O
4 Important Limits
4.1 lim, 032 =1
Chapter4.1 The first important limit is
. sinz
lim =1
z—=0 X

It has been proven in the previous section, so I will not elaborate further.
It’s worth noting that the problems typically don’t come in their original form. In fact, as long as[J — 0,
then lim,_,q % = 1(The chapter on Equivalent Infinitesimals also has similar properties.)

[e.g.4.1.1]Calculate:

[e.g.4.1.2]Calculate:

. tanz?
lim
x—0 :E2
Solution:
tan 2 tant . sint
lim 5— = lim —— = lim =
z—=0 I t—0t t t—0+ tcost
tan z2
=1 O

So thatlim 5
z—0 x

[e.g.4.1.3]Prove:

. . x x
}gr%){nlgréo[cosxcosi -+ Cos 27]} =1

Proof:Because of

T T COST COS 5 * * * COS 5 + SiN o o
COST COS o +* + COS o = — = =
2 2 sin 5 sin o
So that )
. . T x . . s . sinx
lim{ lim [coszcos = - --cos —]} = lim lim — = lim =1
z—0 n—o0 2 AL z—0n—oo 8in 57 20

4.2 lim, . (1 + %)x =e

Here, without further proof, we introduce the second important limit:
1 xr
lim (1 + ) =e
Tr—r00 €T

lim (1+z)

x—0

This limit is equivalent to

8=

=€
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[e.g.4.2.1]Calculate:

lim (14 22)*

z—0

Solution: ) ) )
lim (14 22)% = lim (1 + 22)2 - (1 4 22)2 = €2
x—0 z—0

[e.g.4.2.2]Calculate:

Solution: On the one hand

On the other hand

]. ]. " n — ]. _ . n n — 1 n2
(1+n_2> =(1+ — yamT AT > (14 ya-1-2
as well as
_ 1 n—1 _ n—
lim (1+ 2 = lim (142 —e= lim (1+-)"
n— oo n2 n— oo n? n— oo n
. 1 1\"
So that lim (1—1——2) =e¢ O
n—00 n n

4.3 (Supplement)lim, .. (>, + —Inn) =~

sequence a, = Y p_, % — Inn is convergent, and its limit is known as Euler’s constant. Record as . Below
is the proof of its convergence.

[e.g.4.3.1]Proof above sequence convergence:

Proof:Because of
1 1 1
—— <In(l+-)< =
n n n

+1
So that
n—1 1 n—1 1
In(1+ — —
> W+ <> o
k=1 k=1
namely
i 1.1 >lnn
kK n
k=1
So that .
a, > —>0
n
And because ) )
ntl —ap=In[1— —— — <0
S
So that a,, monotonically decreasing with a lower bound , So taht a,, convergence. O
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[e.g.4.3.2]Calculate:

i 1 n 1 n +1
m (—— 4+ —— 4+ ...+ —
nsoco\n+1 n+2 2n
Solution:
"1
anzzg—lnn
k=1
So that
. 1 1
lim + —
n—>oo[n+1 n-+2 2n}
=1l 1+1+ +1 In 2n) (1+1+ +1 1 +1n2
= lim T tst-ts, n2n Tttt nn n
= lim (a2, — a, +1n2)
n—oo
=1In2
1 1 1
So that lim +—4+...+— ] =In2 O
n—soco \n+1 n+2 2n

[e.g.4.3.3]Calculate:

1 1 1
li e — ke Nt
ngrc}o<k;n+1+k;n+2+ ern) (m, k € N7)

Hint: By following the same method as the previous problem, you can immediately obtain the limit is In m
O

5 Cauchy Convergence Criterion

Theorem 1 an is a sequence , If Ve > 0,there exists N > 0, If m,n > N , then

|am — an| < €

We called sequence {a,} convergence.

corollary 1  a, is a sequence , If Ve > 0,there exists N > 0, If n > N | for Vp € N then

|antp —an| <e

We called sequence {a,} convergence.

[e.g.5.1]Proof sequence a,, convergence:

1 1 1
Tt P



Pengbo Lu—Some Methods to Calculate Limits

Proof:Ve > 0,there exists N = %, If n> N, for Vp € N then

‘an-&-p_an‘
1 1 1
= (n+ 1)2 + (n+2)2 + ...+ 7(71—}—]))2
g . ! ’
“n(n+1)  (n+1)(n+2) (n+p—1)(n+p)

1 n 1 1 I 1 1
n+l n+l n+2 7 n+p—1 n+p

1

n

1 1
ﬁ_n—kp
1
n
€

IN

A

Q.E.D. O

[e.g.5.2]Proof of the Divergence of the Partial Sum Sequence (S, = 1 + % + ... + 1) of the Harmonic

Series (3 | L) sequence :

Proof:de = %, for VN > O,namely n > N jthere existsp = n,still

T SR B T
T n+1 n+2 7 n4+p  n+p 2

‘Sn-‘rp B Sn‘

So that sequence S,, divergence. d

6 Equivalent Infinitesimals

Definition 1  (Infinitesimal ): Suppose function f(z), if lim,_,,, f(z) = 0,then we called f(x) is an
infinitesimal as * — xy.zo can be substituted bymar, Zg ,+00, —00, 00.

Definition 2  Equivalent Infinitesimals : Suppose function f(x),g(x), if lim,_, 4, % = 1,then we
called f(z),g(x) are equivalent infinitesimals as  — zg .

When calculating limits, equivalent infinitesimals in the overall expression can be substituted.
Common equivalent infinitesimals equivalent infinitesimals:

x ~sinz ~ tanx ~ arctanx ~ arcsinz ~ e — 1 ~ In(1 + )

1 1 2
— COST ~ —XT
2

1+z)*—1~ax
a*—1~zlna

All of the above are equivalent infinitesimals as x — 0.
Note: Similar to Important Limits, if [J — 0,then[] ~ sin [1.The same applies to the remaining functions.

10
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[e.g.6.1]Calculate:

. VI+a? -1
lim ————

z—0 1 —cosx
Solution:

o V1I+22-1
lim ———
z—0 1 —cosx

1,2

= lim ?—
z—0 §x2

=[]

[e.g.6.2]Calculate:

1

. a®+b"\ "
>
ili%( 2 > (a,620)

Solution:

(1) If at least one of a and b is 0,then the original limit is 0;
(2) If neither a nor b is 0,then:

1

lim a” + b _ elimxﬁo %-ln(iaz;bl)
x—0 2

1 a® + b*®
lim — - In
z—0 x 2

zliml-ln<a ;b —1—|—1>

Consider

x—0

o1 (am_1+bm_1)
- lim--({——
x—0 2 2

1
“ X —Vab

Note: And so on, or similarly by inference,we get

So thatlim
x—0

lim (a’f +ai+..+a

z—0

1
) = Yaraz - ay, (a; > 0,i=1,2..n)

n

[e.g.6.3]Calculate:

. sinzx
lim
T—0o0 xT
. o . . sinz
Solution:Note that the limit is tending towards co,so lim =0
r—00 X

11
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[e.g.6.4]Calculate:

. 2sinx —sin2z
lim —————

z—0 33‘3
Solution:

2sinx — sin 2z

x—0 ;C?’
. 2sinz — 2sinxcosx
lim -
x—0 93‘3
. 2sinz(1l — cosx)
lim
x—0 333
2u(la?)
lim —=—=
x—0 ;C?’

=[1]

Note: This problem cannot be solved directly by substituting 2sinx ~ 2z and sin2z ~ 2x . Because
when substituting equivalent infinitesimals, the substitution needs to be done as a whole. Replacing individual
terms within a factor may lead to errors.

7 Heine’s Theorem

Theorem 1  Suppose f(z) is defined on U°(xg,d’) , then a necessary and sufficient condition for
the existence of lim,_,,, f(z) is that for any sequence {z,} contained in U°(zg, ¢') and converging to
xo the limit lim,,—, o f(x,) exists and is the same for all such sequences.

The Heine’s Theorem is generally used to determine the non-existence of a limit or to convert problems of
finding limits of sequences into problems of finding limits of functions. If there exists a sequence {x,}, such
that the limit lim,,_, f(z,) does not exist, or if there exist two sequences {z,}, {y,}, such that the limits
lim, oo f(zy) and lim,, , f(yn) exist but are not equal, then the original function limit does not exist.

[e.g.7.1]Prove that the following limit does not exist.
T
i .
Jm sm(—2 )

Proof: We can take two subsequences x, = 2n and y, = 4n + 1, then we have:

. . 2nm
nhﬁrr;Q bln(T) =0
lim sin {M] =1
n—oo 2
Therefore, the limit of the original function does not exist. O

12
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[e.g.7.2]Calculate:

1

lim n? (1 — cos )
n— 00 n
1

lim 2?2 (1 — cos )
r—+00 X

1

1 1
lim z2 (1—005): lim z2- = -

T—~+00 x r—400 222 2

Solution: We only need to calculate
Because of

Therefore, according to Heine’s Theorem, we know that

Jim n? (1 — cos i) = %
8 L’Hospital’s Rule

8.1 Indeterminate Form of (9)

Theorem 1  If f(z) and g(x) satisfy:
(Dlimg s, f(z) = limy_y, g(z) = 0;
(2)f(z) and g(x) are differentiable on the punctured neighborhood U®(z,d) of x , and ¢'(z) # 0;

(3)limg—, 4, % = A Then /
lim @: lim (@) =A
v=20 g(z)  wowo g'()

Note :zy can be replaced by xar, x ,+00,—00,00, and A can be +00, —00, 00.

[e.g.8.1.1]Calculate:

Solution:Let ¢ = y/z,Then

T
lim Vo
a—0t 1 — eV®
t
= lim
t—0+ 1 — et
1
= lim —
t—0+ —et

13
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[e.g.8.1.2]Calculate:

et —41+22
lim ————
z—0 11'1(1 =+ 1‘2)
Solution:

et — /14 2x

i
w50 In(l + 22)

z—0 2
T _ (1 —%
= lim & (1 + 22)
z—0 (256)
i € P A+ 22)7
z—0 (2)

[e.g.8.1.3]Calculate:

1
1+a2)s =

i L 2)* —e

x—0 €T

Solution:
1 Lo
lim M
x—0 x
) 6% In(1+z) _ e
=lim ——M—

x—0 €T
. el““jz)—l .
=lime
x—0 €T
In(1+z) 1
= lim e—=
x—0 €T
In(1 —
i 2 +2) —
x—0 (EQ
1
= lim e 12
z—0 2x
. 1
= lim —e
| e
2

8.2 Indeterminate Form of é

Theorem 2  If f(z) and g(z) satisfy:

(Dlimg_y 5, g(x) = oo;

(2)f(x) and g(x) are differentiable on the punctured neighborhood U°(x, d) of zg, andg’(x) # 0;
(3)limy—, 4, g,gi; = A Then

Note :xy can be replaced by mar, zqy , +00, —00,00,A can be +o0, —00, 00.

14
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[e.g.8.2.1]Calculate:
2024
lim -
rz—+oco et

Solution:
. 2024
lim
r—+o0o e~

T\ 2024
= lim ( L)

r—+00 \ 2024

2024
. x
= lim =
r—-+00 2024

2024 2024
< lim - >
r—+00 2024

[0]

[e.g.8.2.2]Calculate:

. T+ sinx
lim ——
r—r+400 X
Solution:
. T +sinx
lim ——
T—r+00 €
. sin x
= lim 1+
Tr—+00 x
. sinx
=1+ lim

r—r+00 xT

=[1]

e.g.8.2.3(Fallible)]|The function f(x) is second-order differentiable at x = 0 , and lim,_,q ! (f) = 1.Then
[e.g ( : . ,
which of the following statements are correct?

Atim 2 _ 3 B oy =o

0 g2
1
caim @ 5 p )= o
x—0 x

Solution:Let

@) = £0) + PO+ L2 IO s 03

2 6
Then
lmf%)—l
x—0 X
fo JO + £ + 50> 4+ 5040 4 o@®)
B x—0 {E?’ B

Therefore, for the limit to exist, it is necessary that f(0) = f'(0) = f”(0) = 0,f"(0) =6
From this, we can conclude that option B is correct and option D is incorrect.

0, ifx=0

234zt sind, ifx#£0

z°

For options A and C, we can provide counterexamples: f(z) = {

15
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9 Taylor Formula

9.1 Taylor’s Formula with Peano’s Remainder

Definition 1
form:

f'(20)

f(x) = f(zo) + 1

(x —x0) +

If f(z) has nth-order derivatives at © = x,then f(z) can be expressed in the following

f”(:EO)
2!

f(n) (o)

+ |
n:

(x — z0)% + ... (x — x0)™ + oz — o))"

When z¢ = 0 ,it is called Maclaurin’s formula. Some commonly used Maclaurin’s formulas include:

2

n

et = +x+§+...—|—a+o($)
) 3 $5 1 x2m—1 o
- £2m ,
P - - _1\m m—+1
cosx =1 5 —1—4! +.+(-1) (2m)!+0(x )
R A e
n r)=z——+—=+..+(— — +o(x
2 3 n
-1 — 1) (a— 1
(1+x)a:1+ax+%x2+...+a(a ) n'(oz Ry )x"+o(x”)
1
—— =14z+2+ ..+ 2" +o(z")
1—-2z
1
12— l—z+2?+ .. +(=1)"" 2" +o(z")
1 . 22n _1)22" B,
tanz = x + gz‘s + ..+ ( (273)! 2?1 4 o(x?™)
3 5 2n—1
arctanxzx—x——l—x——I—..—i—(—l)”_l - + o(2*™)

3 )

Where B,, represents the n-th Bernoulli

(2n—1)

number.

In fact, the aforementioned formula can be rewritten as mentioned in Taylor formula with infinitesimals

of the same order.

[e.g.9.1.1]Calculate:

Solution:

(&

2

“’:1+x+z—'+o(x2)

Fw
w‘ 8,

16
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So that:

[e.g.9.1.2]Calculate:

e?sinx — x(1 + )

1m
x—0 x?’

Solution:

23
sinx =z — e + o(z*)

22
e””:1+:z:+§+o(x2)

! )
exsinx:x+x2+?+o(x3)

So that:

lim e*sinz — z(1 + )
x—0 ,’1}3

X x+m2+“":—;+0(x3)—x(1+x)
= lim

x—0 ;L'?’

= lim
z—0 IES

textbfle.g.9.1.3(difficult)] Calculate:

Solution:

—-£ In(1+z) _ 1

wfl _ In(z+1)
x

e
= et lim
x—0 .CC2

17
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Because of In(1
T o )
z—0 €T
So taht
2 2
G R (ln(l +x) 1) % (ln(l +x) 1> . (ln(l +x) 1>
T
And ( ) )
In(l1+z x 9
1= _Z 4
T 2 + + o(x )
So ) ,
ln(l—i—x)_l _ T o(?)
T
So taht
In(ito) 4 ln(l + ac) x? 2
e i s G
T
Therefore
6“‘@%@_1 _ In(z41)
6e+1 III% - x
T— X
In(14z) | 22 2 In(z+1)
_ee+1lim x +§+02(!L')— T
z—0 X
B ee+1
|8

9.2 Taylor’s Formula with Lagrange’s Remainder

Definition 2 If f(z) has n continuous derivatives on [a, b] , and is differentiable on(a, b).Then there
exists at least one point &,such that:

f'(20) f" (o)
1! 2!

(x _ xo)n + f(nJrl)(f) (fﬂ _ :L‘g)nJrl

S (o)
i (n+1)!

n!

f(x) = flzo) +

(x —x0)2 + ...

(x —xo) +

When x¢ = 0 it is called Maclaurin’s formula with Lagrange’s remainder. Rewriting the first six terms of
the above formula, we obtain:

N I Y
e = x —_ —_— — €
2 al " (nt 1)
: 1,3 1,5 S l.2m71 m x2m+1
2 I‘4 me 1 2m—+2
cosle—a—kﬂ—k..—i—(—l) @m)! + (1) mcos(@x)
LL’Q 56'3 " ,CC"+1
In(1 =r— —+ =+ ()T ()"
e I S
-2 1= 6a)2
1 1) (o — 1 1) (o —
(14+2)" = 1+az+ a(a )x2+m+a(o¢ ) (a—n+ ):U” ala—1)-- (e —n) (14 0a)> 1t

2! n! (n+1)!
The above satisfies 0 < 0 < 1

18
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9.3 Taylor’s Formula with Integral Remainder

Definition: If f(x) has an n+1 th-order derivative at x = x¢ , and f("+1)(z) is integrable on [min{z, o}, maz{x, 2¢}]

,then
f(n) (o)
n!

@) = fan) + 1 (wo) o — )+t T gy L[ g0 )0ty

If we let f(x) = e®, 2o = 0, then we have:

T 1 2 xk 1 wt n
ef=1l+ax+-z*+..+—+— e'(x —t)"dt
2 n' n' 0

[e.g.9.3.1]Calculate:

k 2
- 2k—0 i _ i LTIt ety

n— oo en n—oo en

Solution: Using Maclaurin’s formula with the integral remainder term, we obtain:

2
n _ n nﬁ o - _n\n
e 1+1'+2|+ + + / (n —t)"dt

Therefore:

1+1,+2,+ Jrn,

lim
n— o0 e”
lim em — L [ ef(n — t)ndt
n—oo en
1 —t)dt
g Lottt
n—oo n! en

Let t = nz, dt = ndx,Then

n 1 1
/ et (n —t)"dt = n™t! / e"*(1 - z)"dz = n" ! / enlo+n(1-2)] g
0 0 0

Using Arzela’s Dominated Convergence Theorem, we obtain:

1
/ 6n[:c+ln(lfz)]d‘r -~ l(n _ OO)
0 V 2n

1 n —t)"dt ntl [x
n—oo n) en n—oo nle™ \ 2n

Therefore,

Furthermore, using Stirling’s formula n! ~ v2nm (%)™ (n — 0o),we obtain:

n+1 T

lim —
n—00 ’n,' en 2n

n+1 T

= lim —,/—

n—oo \2nm - (B)n-en V 2n
_ 1
|2

19
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9.4 Taylor’s Formula with Cauchy’s Remainder

Definition 3 If f(x) has an n + 1 th-order derivative at ©* = =zg,then there exists £ €
[min{x, xo}, max{z,zo}], such that:

£ (o)
+ n! . @

F(@) = f(@o) + (o) (@ = w0) + .. ~ z0)" + f ()@ — (@ — zo)ds

If we let £ = g + 0(x — x9),0 < 6 < 1,then

J (o)

n!

f(x) = f(zo) + f'(x0)(x — 20) + ... + (x —xz0)" + %f("ﬂ)(xo +0(x — 20))(1 — 0)"(z — x0)" M da

9.5 Taylor formula with infinitesimals of the same order

Definition 4  (infinitesimal of the same order):If

lim f(z)= lim g(z) =0

T—XT0 T—XTo

and existA,such that
|f(z)] < Ag(x)

.Then f(z) and g(x) are said to be infinitesimals of the same order, denoted as

corollary 1  (Infinitesimal limit form of the same order):If

and existA,such that

20
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So,Taylor’s Formula with Peano’s RemainderCan be rewritten as Taylor’s formula with O:

2
T ldat ot +—+O( )

9!
x3 xP oy aPmel -
sr ==y gy e O Ty FOET
v ot x?m 2m-+2
cosa:_l———f—m_f_ A (=)™ 2! (z )

2 8
ln(l—i—x):a?—?—&-?—&-...—i—(— )”1 +O( ntly
(1+w)a=1+aw+%x2+...+ (a ) n'(a nt )x"+0(x”+1)

1
1—:1+x+x2+...+x“+o(ﬂ+l)
—x
1
=1 2 _lnln 1o} n+1
1+= Tttt (=) +0("")
[e.g.9.5.1]
.1 n ¢
lim — — —
neen 2 3 n+1
Solution:
L L E T S L —1In(n +1)
Where
R VI S T )
TYn+1 = 9 3 ] n(n
.Let
_ Ty +In(n41) -1
" n
So that:
g ) ()
l'n:— = —
+ +.+7H n\1-—a,
Inz, = —nln(l —a,) —Inn
a2
—n(an-‘r%—i-...)—lnn
Inn.,
n(a, + O((— - )?) —Inn
1
= na, — Inn + nO((—)?2)
n
n+1 Inn
=i = L+l " nO(2)?)
Therefore

1
lim — i =t
n—oo n + + ...+ m

21
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10 Contraction Mapping

Theorem 1 (Contractive Mapping for Sequences):For any sequence z,, , if there exists
0 <r < 1and N > 0,such that for all n > N jthe inequality

|Znt1 — @n| < rlTn — Tp_1]

holds, then the sequence {x,} converges. Such a sequence {z,} is called a contractive sequence.

Proof: Let |zn,4+1 — Zn,| = M Then, for any n > Ny, p € N,holds

P
|Zptp — Tn| = | Z(xn-&-k — Tpyk-1)]

Therefore, by the Cauchy Convergence Criterion, {z,} converges.

corollary 1 If z,41 = f(x,),f(x) is differentiable, and there 3r € (0,1), s.t.|f'(x)| < r,then {z,}
converges. Proof: Since

|Tni1 — 2n| = |f(2r) — flTna)| = ‘f,(§)| Ntn — 21| < 7|TR — Tn_a|

Tt follows from Theorem 1 ,s0 that{x, } converges.

Definition 1  (Fixed Point)For a function f(x), if there exists zg € D, such that

f(zo) = o

then z is called a fixed point of f(z).

Theorem 2 For a sequence generated by the iteration of a continuous function f(z),i.e.xp41 =
f(zy) if {x,} converges to zg,then f(z¢) = x¢

Proof: Since the limit of {x,, }exists, we can take the limit on both sides of x,+1 = f(z,,) as n approaches
infinity, resulting in

o = lim x,y1 = lim f(z,) = lim f(x) = f(xq) (Heine'sTheorem)
n—oo n—o0 T—xT(
corollary 2 The converse of Theorem 2 is also true: if for all x € D, f(z) # x,then the sequence

{z,} diverges (i.e., its limit does not exist).

22
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Therefore, for some iterative sequences, we can first solve f(x) = z to obtain the limit value xg, and then
substitute g = f(xo) into the equation we want to prove. That is, to prove lim, o Zn4+1 = To, it suffices to

prove that lim, o (Tnt1 — o) = lmy, o0 [f(2n) — f(20)] =0

textbfle.g.10.1]The sequence xg = 1,241 = /22, has a limit. Calculate,Calculate lim, o 2,

Solution: Because of 1 < xg < 2, we assume 1 < z,, < 2, then 1 < x,,41 = V22, < 2 holds..

Method 1: Let
V2 V2
= < —
2y/x = 2
By Corollary 1,{x, }converges. Taking the limit on both sides of x,1; = /22, as n approaches infinity, we
get x = v/2x,which yields x = 2.
Method 2: Taking the limit on both sides of x,+1 = 2z, as n approaches infinity, we get x = v/2z,
which yields z = 2. Then,

<1

f(z) = V2z,|f'(2)|

22 1 3
_ ?| = §|xn+1 2| |epe1 +2| > §|$n+1 -2

2
T
|zn — 2| = |%+1

Let ¢ = % then

2
[Tt — 2| < §|zn -2 =¢qlx, —2| < q2|$n_1 —2|<..<q"z1 = 2] = 0(n—0)

Therefore,lim,, oo z,, = 2

[e.g.10.2(Difficult)](1) Let f1(t) = 2, f2(t) = ¢ ,and {ni} be an integer sequence taking values in

{1,2}. Define Fi(t) = fn,(t),Fry1(t) = Fi(fn,,.(t))(k > 1). Prove that for any = € R, the limit
limy o0 Fi(2) exists and is independent of x .

(2) What is the conclusion if fi, fo in problem (1) are replaced by fi(t) =t — arctan(¢) and
fa(t) = 2arctan(t) — t?

Solution:(1) Proof: Since f{(t) = %, f3(t) = 3, we have

)= fulo)] < 5l =] (k=1,2)

Therefore, f1, fo are contraction mappings. Moreover, they have a unique common fixed point xo = 3
So taht

|Fi(z) = 3| = |fny © fry 0 o0 frp (@) = fn, (3)
< %|fn2 O frg © . 0 fr, () — 3]

%|an 0 fry © . 0 fnp () — fny(3)]

IN

IN

1
FUM(%) -3

St () — e (3)

IN

1
27@|3?—3\

From this, we can conclude that limy_, o Fj(2) =3

23
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(2) We conjecture that when both f; () and f2(t)share the same fixed point and are contraction mappings,
the calculated limit exists and is independent of z. Given that

t? 11—t
! —_—
A0 = 1 ) = 1
Let |f.(t)] < 1,then tg = 0,and | fx(t)| < |¢], fx(to) = 0 Next, we prove that
lim Fj(z) =0
k—o0

Otherwise, there would exist a subsequence {F,, (z)} of {Fk(x)},such that 0 < § < |Fpy,, (x)] < |x| At this
point, | f{],| 5| have an upper bound ! on the intervals [—|z|, 3] U[2, |z[]. For any y € [4, |z|], we have

Ifk-(iy)\=\fk(iy) Jr(E )+fk( ) fr(0)]
< [fr(Fy) = fr(£ )|+|fk( ) fr(0)]

5.6 5
<ly—2)+ 2 = 1-D=
<y 2)+2 ly + ( )2
Sly+(1—l)%

41
Y

On the other hand,

6 < |Fmy(x)] = |fn, 0 fay 0.0 0 fnmk|
<\ fn; 0 fn; 10 Ofn"”k|
<|z|(j =1,2...mg)

Therefore,

[ Emy, ()] = [fny © frz 0. Ofnmk|

l+1
< — |fn2 -Ofnmk‘

1
()"

Letting k — 400 we obtain limy_, oo |Fp, | = 0. This is a contradiction. Therefore, limy_, 4 o0 |F| =0 O
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11 Stolz’s Theorem

Stolz’s Theorem, also known as Stolz’s Formula, is an effective method for finding the limits of certain
sequences, akin to L’Hopital’s rule for sequences (see L’Hopital’s rule for functions in L’Hospital’s Rule).

11.1 Stolz’s Formula for Sequences

Theorem 1 (2 Indeterminate Form) If the sequences a,, and b, satisfy: b, is monotonically
decreasing and converges to 0, a,, converges to 0, and

. Apt+1 — @
lim 2+ " =4
=€ bn-i—l — by,
then a
lim 2 =A
n— o0 n

where A can be 400 or —oo.

Theorem 2 (£ Indeterminate Form) If the sequences a, and b, satisfy: b, is monotonically
increasing and converges to oo, and

. Qnp41 — @
Tn —eatl — % 4

n=oo bpy1 — bp

then

. an,
Iim —=A4
n— oo n

where A can be 400 or —oo.

Now let’s revisit Example 1.1.4 using Stolz’s Theorem. The limit satisfies Theorem 2, thus:

. ay+tax+..+tay . G
lim = lim =% =

n—00 n n—oo 1

n_InCF
e.g.11.1.1(Difficult)] Let S, = Z’CAZHOQL find limp_00 S
Solution: Using Stolz’s formula, we have:
o InCFE
lim S, = lim k=0
n—oo n—oo n
n+1 n .
— Lim k=0 mCyy =Yg Cy
n—00 (n+ 1)2 —n?
k
) holn Bt — IOl
= lim :
n n+1
~ iy k=0 In n—kt1
Since
n n+1
Y In(n—k+1)=)Y In(k)=In(n+1)!
k=0 k=1
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therefore:
Y ko n nTIQ}H
n—o0 2n +1
(et DIn(e +1) — 5 In(k)
(n+1)In(n+1) —nlnn —In(n+1)

[e.g. 11.1.2] Suppose lim n(A, —A4,-1) =0
n—oo

Prove that when lim,,_, % exists, we have

lim A4, = lim At Apt. + A,

n— oo n— 00 n

Proof: Let a1 = A; and a,, = A,, — A,,_1 for n > 2. Then

A — <An Ay +A2+...+An) +A1+A2+...+An

n n
A=A, — A1)+ (Ano1 — Apa) + oo+ (As — Ay) + Ay
=an +ap—1+...+a;

lim n(A, — Ap—1) = lim na, =0
n— oo n— oo

Therefore,
Al +A+...+ A,
lim (An~ LF Aogbt 4 )
n— o0 n
. nay + (n—ag + ... + an
= lim |(a1 + a2+ ...+ an) —
n— oo n
. Gz +2a3+ ...+ (n—1)ay,
= lim
n—oo n
= lim 7@ —an
n— o0 1
=0
Thus,

lim A4, = lim At Aot + A,

n— 0o n— 00 n

[e.g. 11.1.3] Let 29 = a, where 0 < a < 7, and x,, = sinx,_; for n = 1,2,.... Prove that:

. n
RN

Proof: First, we prove that lim,,_,., 2, = 0 (otherwise the limit we seek does not exist).
Since 0 < a < § and 7o = a, we have

. T
O0<zp=sn2,_1<Tpn_1< ) for n=1,2,...
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Therefore, x,, is monotonically decreasing and bounded below, so lim,, ,~ , exists. Let this limit be x,

then x =sinz, so x =0, i.e., lim,_, z, = 0.

Next, we only need to prove that
n
lim -— =3
n—oo =
x'n,
Since

lim —
n—oo -5
w’ﬂ.

. (n+1)—n

=1 T 1

n—oo 5 — 5

In+1 Th

x2 sin” x,,
= lim —5
n—oo 22 — sin” x,,
z?sin?
= lim —
=0 22 —sin“x
. z*
= lim - -
z—0 (z +sinz)(x —sinx)
4

= lim 3
z—=0 (2z + o(x))(% + o(x3))

=3

Therefore limy, o0 \/F2n =1

11.2 Stolz’s Theorem in Functional Form
(Y Indeterminate Form) Suppose T > 0 and the following conditions are satisfied:

Theorem 3 0

(1) 0 < g(z +T) < g(x);

(2) lim f(z)= lm g(z)=0;
) — f(x) ;

(= Indeterminate Form) Suppose T' > 0 and the following conditions are satisfied:

Theorem 4

(1) gz +T) > g(2);
(2) lim g(z) = +o0, and f(z), g(z) are bounded on any closed interval within [a, +00);
T—+00

. fle+T)— f(x)
®) A et T) —g@) -
M = [, where [ can be +00, —0c0.

Then lim
z—+oo g(x)
[e.g.11.2.1] Suppose f(z) is defined on [a, +00) and is bounded on any closed interval within this range.

Given that lim,_, | o W = [, prove that:
l
R C) I
z—too gt n 41
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Proof:
N

z—}gloo ,’1,‘”"‘1
flz+1) — f(z)
z—+oo (x4 1)+l — gntl
1) —
o o+ )~ )
T—+00 (n + 1).23” + "1.2)"xn—1 +...+1
fx+1)—f(z)

xn

= lim

a=oo (p 4 1) 4 (Hnl 4 4 L
l

n+1
This completes the proof. O

11.3 Converse Theorem of Stolz’s Theorem

The converse theorem of Stolz’s Theorem does not necessarily hold. For instance, take z,, = (—=1)",y,, = n.

Although lim;, o0 7= = 0, the limit lim, o % does not exist.

corollary 1  In fact, if z,,y, satisfy the conditions of Stolz’s Theorem, and both lim,, ﬁ
and lim,, . z— exist, then we only need to know lim, . z—" By applying Stolz’s Theorem, we
immediately obtain:
3 Tn g Tp — Tp-1
lim — = lim ——
n—oo yn n—oo y?’l — yn—l

However, to use this conclusion, we need to know or prove beforehand that the limit lim,,_ o ﬁ
exists.
The following theorem does not require prior knowledge of lim,, o %, but adds some other condi-

tions. Starting from the properties of limits, it determines whether the converse theorem of Stolz’s Theorem
holds.

Theorem 5 (= Form) If lim,, ;o ¥, = +00, and there exist N > 0, A € R such that when n > N,
Yn+1 > Yn, then:
(1) If limy, o0 yn_”ﬁ = A and lim,,_, % =, then

° Tp — Tp—1
lim ——— =1
n—=00 Yp — Yn—1

(2) If limy, o0 ﬁ = A and lim,,_, Z—: = [, then

Tp — Tp—1

lim = ||

n—oo yn = yn—l

Note: [ can be 400, —00.

[e.g.11.3.1] Solve for:

Solution: First,
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(Note: Here we used the fact that lim,, 711 = 0 and the property of limits.)
Since it satisfies the conditions of Theorem 5, we have:
nF —(n—1)* o onk

lim ———— = lim — =
n—oo et —en—1 n—oo e

Theorem 6 (% Form) If lim,,— 00 ypn, = lim,, 00 ,, = 0, and there exist N > 0, A € R such that
when n > N, yp,11 < Yn, then:

(1) It ™ —y;nq is bounded above and lim,,_, o z—: = A, then

. Tn — Tp—1
llm —_— = A
n—=00 Yp — Yn—1

(2) It xn_f”;m is bounded above and lim,,_, o % = o0, then

Ty — Tp—1

lim ———— =
n=00 Yp — Yn—1

Theorem 7 (Stolz’s Converse Theorem in Functional Form) Let 7' > 0, A, € R, and suppose
gl +T) > g(x) and limg 1 o g(x) = +o00. If:

(1) limg s 1 oo % = A and limg_s o % =, then

(2) limg s 1 oo % = A and limg_s o fz) _ 0o, then

g(x)
 f@etT) - i)
e ST @)

Theorem 8 Let T' > 0,1 € R, and suppose g(z+7T) < g(z) and lim, o g(x) = limy 400 f(z) =

0. If:
f(z

N2

(1) limg—y 4 00 % is bounded above and lim,_, 4 @) = [, then
@) - f@)
oo 9@+ 1) — g(a)
(2) limg—y 4 0o #% is bounded above and lim,_ 4 z(—g = 00, then

o JE@+T) — f(@)
e g+ T) = g(2)
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12 Mean Value Theorems

12.1 Differential Mean Value Theorems

When solving limit problems, we often encounter structures in limits that involve the difference of function
values of one or two functions. In such cases, we can consider using the Lagrange Mean Value Theorem and
the Cauchy Mean Value Theorem to express the function difference in terms of derivatives. Sometimes, this
manipulation can greatly simplify the calculations and make it easier to find the limit.

12.1.1 Rolle’s Mean Value Theorem

Theorem 1  Suppose f(x) satisfies:

(1) It is continuous on the closed interval [a, b];

(2) It is differentiable on the open interval (a,b);

(3) f(a) = f(b).

Then there exists at least one point £ in (a,b) such that f/(£) = 0.

12.1.2 Lagrange’s Mean Value Theorem

Theorem 2  Suppose f(x) satisfies:
(1) It is continuous on the closed interval [a, b];
(2) It is differentiable on the open interval (a, b).

Then there exists at least one point £ in (a,b) such that f/(§) = W.

[e..12.1.2.1] Find:

n—oo

1 1
lim n? (arctan — — arctan >
n n+1

Solution:

1 1
lim n? <arctan — — arctan )
n n+1

n—oo

1 11 11
= i 2., N -
isoo | Lt €2 <n n+1) (56(n+1’n>)

1 1
= lim nQ-(— )
n—00 n n—+1

=[1]

[e.g.12.1.2.2] Find:

r _ sinz

. e e
im-———-—
x—0 .132 111(1 —+ ZL‘)
Solution:

et _ esSine

lim ———
250 22 In(1+ z)
ef(xr — sinx)
= lim ————2
z—0 22 1n(1 + x)

x— (a: - “—63 + 0(363))
= lim 3
z—0 x
|1

6

(¢ is between x and sinx)
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12.1.3 Cauchy’s Mean Value Theorem

Theorem 3  Suppose f(x), g(z) satisty:
(1) Continuous on the closed interval [a, b];
(2) Differentiable on the open interval (a, b);
(3) f'(x), g (x) are not zero simultaneously;
(4) g(a) # g(b).

Then there exists at least one point £ in (a,b) such that g :Eg = %

[e.g.12.1.3.1] Find:

. sin (z%) — sin (27)
lim —
Solution: Let f(x) = sinz, g(x) = 2%, then

sin (%) — sin (27)

lim
z—2 Qz® _ 927
“(®lnz —2%1n2
= w]gg cos (232 . (I;Tn % n2) (€ is between min{z”, 2%} and max{z”,2"})
_ | cos4
| 161n2

[e.g.12.1.3.2] Find:

a bz

e — e

lim ——————
z—0 sin ax — sin bx
Solution:

e ebz
m ——(——
z—0 sin ax — sin bx
aet — bes
m—
-0 cos&(a — b)x
S(a—b
i &{e=b)
0 cosé(a — b)x/x

(¢ is between az and bx)

12.2 Mean Value Theorems for Integrals

The Mean Value Theorems for Integrals have many similarities to the Mean Value Theorems for Derivatives.
If a definite integral with variable limits is viewed as a function f(z), then the Mean Value Theorem for
Derivatives (when conditions are met) can also be applied to f(z). However, there are also some differences,
especially in the form of the Second Mean Value Theorem for Integrals.

12.2.1 First Mean Value Theorem for Integrals

Theorem 4  Suppose f(x) is continuous on the closed interval [a, b], then there exists at least one
point & € [a, b] such that:

b
/ f(@)dz = f(€)(b— a)
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Theorem 5  Suppose f(x),g(x) are continuous on the closed interval [a,b], and g(x) does not
change sign on [a, b], then there exists at least one point ¢ € [a, b] such that:

/ ' f@)g(a)dz = £ / e

Theorem 6 Suppose f(z,y) is continuous on a bounded closed region D, then there exists at
least one point (£,n) € D such that:

/ /D f(@, y)do = f(&,1) - o0

where o is the area of D.

Theorem 7  Suppose f(z,y),g(x,y) are continuous on a bounded closed region D, and g(z,y)
does not change sign on D, then there exists at least one point (£,7) € D such that:

//D f(z,y)g(z,y)do = f(&,n) //Dg(x,y)do

[e.g.12.2.1.1] Find:

1
lim sin” zdx
n—oo 0

Solution: According to the Mean Value Theorem for Integrals, there exists &, € [0, 1] such that:

1
/ sin” xdx = (1 = 0)sin” &, =sin" &,
0

Since &, € [0, 1], it follows that 0 < sin" &, <sin" 1 — 0 as n — co. Therefore,

1

lim sin” zdx =0
O
[e.g.12.2.1.2] Find:
3z
t
lim [ 00
z—0 x t

Solution: According to the Mean Value Theorem for Integrals, there exists £ € [z, 3z] (note: corrected from
&n to € as it’s not indexed by n here) such that:

3z

5t
lim &dt
z—0 /. t
3z
= lim cos¢ —dt
z—0 t

x

= lim cos¢In (33:)
z—0 x

= lim cos¢In3
z—0

=[In3]
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[e.g.12.2.1.3] Find:

x . 2
- Join o Sint?dt

z—0 5

Solution: According to the Mean Value Theorem for Integrals, there exists £ € [sin x, 2] such that:

) f? sin t2dt
llm Sin T =
x—0 X
— lim (r — sinz) sin &2
z—0 xd
(% + 0(1‘3)) sin £2
= lim
x—0 .13‘5
1 2
=5 hrrb <£> sin £2
r—r X
i (2)
=—lim ( =
6 z—0 \
|1
16

12.2.2 The Second Mean Value Theorem for Integrals

Theorem 8  Suppose f(z) and g(z) are integrable on the closed interval [a,b], and f(z) is a
monotonic function. Then there exists at least one point £ € [a, b] such that:

b 13 b
x)g(x)dxr = f(a x)dx b x)dx
/Gf()g() f()/ag() +f()/£g()

Theorem 9  Suppose f(z) and g(z) are integrable on the closed interval [a,b], f(z) > 0 and f(x)
is monotonically decreasing. Then there exists at least one point & € [a, b] such that:

/ ' fe)a(e)ds = £(a) / " et

Theorem 10  Suppose f(z) and g(x) are integrable on the closed interval [a,b], f(x) > 0 and f(z)
is monotonically increasing. Then there exists at least one point & € [a, b] such that:

b b
x)g(x)dx = (b x)dx
/ﬁ()ﬁ) f<>/£g<>
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[e.g.12.2.2.1(Difficult)]: Find:

n+1
lim (cos 2%)?dx
n— oo n

Solution: Let ¢t = 22 and dx = \1[dt then:

/ COS Z‘ dx

+1)
Cost —dt

2Vt

/(”“) 1 + cos2t 1
I

- ——=dt
2Vt

(n+1)? 1 (n+1)? 92
il / cos 2ty
n2 4/t

+ I2
For I: ,
(n+1)2 1 \/E (nt1) 1
I, = ——dt = — ==
! /nz NG 2| 2
For I5:

(n+1)2 o 1 3 1 (n+1)
12:/ &dtz—/ cothdt—l—%/ cos 2t dt
n 4\/;f dn n2 4(” =+ 1) 13

2

(where ¢ is some point between n? and (n + 1)?)
And

1 (n+1* sin2(n + 1)% — sin 2n? 1
Ih > —— 2t dt = > —
2= 4n+1) /nz Vg 8(n+1) = dn+1)
(n41)2 . 2 2
I < 2 cos2tdt = sin2(n + 1)° — sin2n < L
dn J,2 8n 4dn
Therefore,
1 1 s 11
2N - < e < =+ —
2 4(n+1)*/n (cosa™)de < 5+ 70

Hence,
n+1 1
lim (cos2?)?dr =| =
n—oo n 2

13 Definition of Definite (Riemann) Integral

We often encounter a type of integral that involves summation, and sometimes the Sandwich Theorem
(Squeeze Theorem) may not be applicable. In such cases, we can consider using the definition of the definite
integral to solve the integral. According to the definition of the definite integral, we can also solve a type of

integral that involves summation.
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13.1 Definition of Definite Integral

Definition 1  Let there be n — 1 points on the closed interval [a, b], denoted as:
a=20<x1 <T3< ..<ZTp_1<xp,=02>0
Each small interval is denoted as
A; = [zim1,2), i=1,2,...,n.

These division points or intervals are called a partition of [a,b], denoted as T = {xzg, z1,...,,} or
T ={A1,A,,...,Ay}. The length of each small interval is denoted as

Al’i =T; — Tj—1

and
Il = e ez

is called the norm of 7.

Definition 2  Let f(z) be a function defined on [a, b], and J be a real number. If for all € > 0, there
exists a 6 > 0 such that for any partition T of [a,b] and any &; € A, as long as ||T|| < §, we have

n

D&)Az —J

=1

<eg

then f(x) is said to be Riemann integrable on [a,b], and J is called the definite integral of f(z) on
[a, b], denoted as:

J = /ab f(x)dx

corollary 1 If f(z) is Riemann integrable on [a,b], a common partition is A; = b_T“ Then,

according to the definition of the definite integral, we have:

b—a — b—a
[
Jim — Zf(““ . )

[e.g.13.1.1]Find:
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Solution:

1k 42k 4 4 nkF
nﬁrgo nk+1

[e.g.13.1.2] Find:

Solution:

_ eT‘—lnn %ln%+ln %+...+ln%

— elimn‘,0<D %(ln %—Hn %-‘,—..A-l-ln )

And

1 1 2
lim —(In= +1In— + ...—|—lnﬁ)
n n

n—oo n n
1<k

= lim =Y In—

Jim =3 o

1
= / Inxdzx
0

= (zlnz — )5
=1

Therefore

.ovn! 1
lim — =| -
n—oo M e
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[e.g.13.1.3(Difficult)] If f(z) has a continuous second derivative on [a,b], prove that:

i (1503 (o 45) - [ o] <

Proof: Expand f(z) at
b—a

_21f0) - f(a)]

T =a+k

using Taylor’s formula with Lagrange remainder, then there exists

@e<a+w—1f_aﬂ+kb_a> (k=1,2,..,n)
n n

such that
T (&)

5 (z — ap)?

f@) = fxn) + f'(zr) (@ — 21) +

Since
a+kl’;f“

(b—a)if< n) En:n f(zy)da

k=1 a+(k—1)b%a

k
/abf in/aJrkb_“ flz)dz

el at+ k‘fl)bna

Since f(z) has a continuous second derivative on [a, ], then
M = max | f"([a, b])|

and

b—

)—n/f dac+z /a+k I (zg)(x — zp)dz

k?l)ba
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Therefore

Note: If f(z) has a continuous p + 1th derivative on [a,b], then this problem can be extended to the
following form:

p—1 k+1 n 1PHL(h — )P
nlergonp { [Z (=1)F. o ( nk+1 Zf (z; ] / f(z } )(p—l—(?)') f(pfl)(b) — f(pfl)(a)}
k=0

Due to the cumbersome proof, it is omitted here. For a detailed proof, see https://zhuanlan.zhihu.com/
p/931322500.

13.2 Definition of Double Integral

Imitating the definition of the definite integral, we can similarly define the double integral.

Definition 3  Divide the region D into n small regions o; (for ¢ = 1,2,...,n), and denote the area
of each small region as o; as well. These small regions are called a partition of D, denoted as

T = {0’1, @95 oo O'n}
The diameter of each small region is denoted as
d; = max{|z — y|} (Vz,y € 0;)

and
1T = s {ds)

is called the fineness of T'.

Definition 4  Let f(z,y) be a function defined on D, and J be a real number. If for all € > 0, there
exists a 6 > 0 such that for any partition 7' of D and (&;,7;) € 04, whenever ||T|| < §, we have

n

D flm)os—J| <e

i=1
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then f(x,y) is said to be integrable on D, and J is called the double integral of f(z,y) on D, denoted

as:
J = [(x do
/ o ( ’ y)

corollary 2  Suppose f(z) is Riemann integrable on [a, b] and g(x) is Riemann integrable on [c, d]
with D = [a,b] X [¢,d]. According to the definition of the double integral, we have:

B

Note: The second summand in the original text seems to be a mistake and should be related to g(x)
or another function, but for the sake of translation consistency, I kept it as f(z) here. However, in
practice, it should be corrected to match the context.

corollary 3  Suppose f(z,y) is integrable on the region D = [a, b] X [¢, d]. According to the definition
of the double integral, we have:
) / flz,y)dedy

tim C=OF=DS S (a2
i=1 j=1

e.g.13.2.1 Find:

nh_)rréc 2n4ZZz sm

i=1 j=1
Solution:
T n n j
2 Pul—
nh_}n;o 2n4ZZZ sm2
i=1 j=1
- n i 2 n j
=3 mlL’%ozl(n> 1<Sm2 n)
j=
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e.g.13.2.2 Find:

lim —
dm 2> ai
i=1 j=1
Solution:

//x2+ 2d:cd

Using polar coordinates substitution, let x = pcos#,y = psinf

x+y
//x2+ — 5 dxdy
coed pcosf + psind
de d,
/ / (pcosh)? + (psinh)? 2

- 2/4 d@/“‘“ (sin 6 + cos §)dp
0 0

:2/4 (51n9—|—cost9)d0
0 cos 6

=2[1 —1In]|cos 0\]320%

g+ln2

Triple and higher-order integrals are similar to double integrals and will not be elaborated further.

14 Gauss Integer Rounding Functions

Definition 1  |z] is the largest integer not exceeding x, and [z] is the smallest integer not less
than z. |z] and [x] are collectively known as Gauss integer rounding functions.

|z ] is called the floor function, for example, [2.5] =2, |[-1.5] = —
[x] is called the ceiling function, for example, [2.5] =3, [-1.5] = —

corollary 1  If {x} denotes the fractional part of z, then {x} =2 — |z].
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e.g.14.1(Difficult): Solve for:

Solution:

When k <2t <k+1, |2t] =k.
If k = 2i (where i = 1,2,...) is even, then ¢ <t < i+ %, and |2t] —2[t] = 2i —2i =0.
If k=2 — 1 (where i =2,3,...) is odd, then i — 1 <t <i,and [2t] =2[t] =2i —1-2(i—1) = 1.

Therefore,
2 / |2t] =2 |t]
> [
k 12
k=1"2
-
i1
zz/ gt
=273
(i
- 2% —1 2
=2
> 1 1
:2 —_— —
> (51 3)
> 1 1
:2 - -
> (57 %)
And since

li _ 1+1+1+ + ! 1+1+ —i—l
= lim —+-+... -+ -+... + =
n—oo | 3 5 2n—1 2 4 2n

= lim

_lim-l—‘r}—l—l—‘,— —l,-i — 1+1+1+ +l

=1In2
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Therefore,

e.g.14.2(Difficult): Solve for:

(where {t} denotes the fractional part of t)
Solution:

k=1

ad 2k k2
:Z/ (1—~+ )dt
k=1"F

& kE+1
S (R EENELY
k=1

Given that lim,,_, . (1 + % + ...+ % — lnn) =, let H, = 1+ % + ...+ % Also, by Stirling’s formula,
n! ~ /2nm (%)n Then,
H,=Inn+~+o(1)

1
Inn! =Inv2r + (n—|— 2) Inn —n+o(1)

Therefore,

k=1

=2n— (H,y1 — 1) —Qi[(k—i—l)ln(k-i-l) —klnk]—i—Qiln(k%—l)
k=1 k=1

=2n+1—Hpi1 —2(n+ 1) In(n+1)+2In(n+ 1)!

=2n+1—-(In(n+1)+v+o0(1)) —2(n+1)In(n +1)

+2(1n\/%+ <n+2>ln(n+1)—n—1+o(1))

=—-1—~v+1n(27) + o(1)
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Thus,

- 1 k+1

" 1 k+1
= li 2 ——— — 2kl
ninéokz_;( EFt1 oy )

— nh—)ngo (=1 — v+ In(27) + o(1))

:’—1—7+1n(27r)‘

15 Approximation Method

The approximation method plays a significant role in solving limits or proving inequalities. The main idea
of the approximation method is to "transform” the expression to be proved, making it similar to the known
and desired forms, thereby facilitating further manipulation.

For example, to prove lim,,_, o a, = a, it suffices to prove lim,,_,~ (a, —a) = 0. While this sounds simple,
in practice, a,, may be complex, while a is relatively simple. In such cases, simply moving a to the left side
does not significantly help with solving the problem. Instead, we should transform a into a form similar to
a,, to facilitate calculation.

[e.g.15.1]

Given lim,,_,oo a, = A, prove that:
a1 +as+as+...+a,
m

li =A
n—00 n
Proof: Starting from
A_nA_A+A+...+A
T on n
we have
a1+a2+a3+...+an_A
n
ap—A+ay—A+...+a, — A
- n
<|a1—A|+|a2—A|+...+\an—A\
- n

Since lim,, o0 @, = A, for any € > 0, there exists Ny > 0 such that for all n > Ny, |a, — A| < e.
Therefore,

lar — Al + |ag — Al + ... + |a, — 4|

n
_ lay — Al + |ag — Al + ... + |an, — 4]
n
oo = AL+ lanyiz = AL+ + fon = 4]
n

M n—No
< — + €

n n
< 2e
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where M is a constant representing the sum of the absolute differences |a; — Al for i = 1,2, ..., No.
Hence,
. a1 +ag+as+...+ap
lim

n—00 n

=A

[e.g.15.2]

Given f(z) ~z asx — 0, and 2, = Y1 f (%3%a), prove that:

lim z, = a
n—oo

Proof: In fact, if f(x) =z, then

Zf 2i—21a :i%—21a:a
— n n

i=1

Therefore, we use >, 2;_21 a to approximate a.

We only need to prove that |z, —a| <e, i.e.,

|z, — al

<e€

Since e = 31, Z551e, we only need

n2
21—1 21 —1 21 —1
f 2 al — 3 al < 3 €

In fact, since f(x) ~x as ¢ — 0, for any € > 0, there exists NV > 0 such that when n > N and ¢ is small
enough, if 0 < |Jc - 2;—’21@| < 6, then

2i—1
=-Lq €
lf (2/_17? ) -1 <=
T a a
Thus,
20 —1 21— 1 2t —1
f 2 al — 3 al < > 15
This completes the proof. O

Note: Since & ~ sinz ~ tanz ~ arcsinz ~ arctanx ~ e* — 1 ~ In(1 + x) as  — 0, replacing = with other
functions also holds.

[e.g.15.3]

Given lim,_,~ a, = a, prove that:

B PR
Jim, 57 2, Crox =
k=0
Proof: Since

we have
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Then,

k=0
1 n n
= |3x >_Cnar— 5. > Cha
k=0 k=0
1 n
S om Zcﬁlak — a
k=0

Since lim,, o @, = @, then |a,| < M, and
1 n
k
o Z Crlax — al
k=0

1 1 &
:ﬁzcﬂak*ﬂ*?ﬂ Z Chlax — al
k=0

k=Nop+1
M1 +n+n?4 ... +nlo) "k
< L &
> +e D>
k=No+1

< 2¢

Therefore,

N RN
Jim, g 2, Crae = 0

—0
[e.g.15.4] Find the limit:

. - k2 n
m ) T
Solution: We can attempt to approximate 7. Although
- k2 n
kz::l e~ 3 as n — 0o

this does not directly help with solving the problem. However, if we notice that

z":lﬁ_n(n+1)(2n+1)_ﬁ+1+i

k=1n2_ 6n2 3 2 6n
then

k:1n2+k‘ 3

_k:1n2—|—k k:1n2 2  6n

72": k2 2\ 1 1

7k:1 n2+k n? 2 6n
Since

- k2 2 2 k3

kzzl(n2+k_7ﬂ>__zn2(n2+k)
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and
— < — —
gnQ(nQ—i—n) ;nQ(nQ—i—k) <;n2(n2+1)
also,
Zk?’ _ n2(n + 1)2
4
k=1
therefore
= n’(n?+n) 4 n
z”: E? 1 (n+1)?
—nP(n?+1) 4 n?+l
Thus,
. I . k3 = k? 1
1 =1 1 =-
nggoz n?(n? + k) nim’; n?(n? +n) 200 Z n?(n?+4+1) 4
So,

k=1
N
4
_|1
|4

[e.g.15.5] If f(z) € C]0, 1], prove that:
4 n ™

li &—— dr = - f(0
i, o l+n2;v2f(x) * 2f( )

Proof: We will prove a stronger statement: It suffices to prove that

Z r(0)

1
lim h —
2

h—0t Jo 2%+ h? f(w)de =

Then, by Heine’s theorem (the principle of the limit under the integral sign), taking the sequence z,, = % — 0t
(as n — +00), we have:

1 1 1
pos n
i —n = 1 -
By e S B R bt Y A g e

Next, we prove that

(' h I
lim /0 flz)dr = gf(O)

h—0%+
Proof: In fact, if f(z) =1, then
1
h T
li ———dr =~
hig)l*/o 22+ R 2

Therefore, it suffices to prove that:

Y
Jin [ @) - FO)ds =0
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Since f(z) is continuous on [0, 1], we have:

Ve > 0,30 < §; < 1L,YO < z < 8y s.t. | f(z) — £(0)] < %
M > 0,Vz € [0,1], s.t. |f(x)| <M

Then,
Yooh
| sl - f0)lda
< (/6 */5> 7))z
=hL+1
For I;:

51 h
n= [ e - o)

<6/‘“hdx

e (51
= — t _—
ﬂ_(arc an - 0)

Ash%O*,%%Jroo,so

farctaun(i1 < c
h — 2
For I5:
L
£ o
s= [l @ - fO)lds
1
h
< d
= /5’1 1'2“’]7/2 x
1 1)
= M (arctan 5 —arctan El)
Since 1 s
hli}rg+ M(arctang — arctan ﬁl) = M(g — g) =0

There exists do > 0, VO < h < 42, s.t.
1 1)
M (arctan 7 arctan ﬁl) < g

Therefore, Ve > 0, 36 = min {d1,d2}, V0O < h < 4, s.t.

/0 M (f@) — FO)de| < ¢

22 4 h2

Thus,

) L' h ™
Jm [ e = 510)
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[e.g.15.6] For all b > 0, f(z) € R[0,b], and lim,_, 1 f(x) = a, prove that:

—+oo
lim t/ e f(r)dr =a

t—0+ 0

400
t/ e adr = a
0

Proof: Since when t # 0, we have

It suffices to prove that
+oo
lim t/ e " [f(x) —aldr =0
0

t—0+

Since lim, o0 f(2) = a, then Ve > 0, JA > 0, Vo > A, s.t. |f(z) —a| <e.
And since Vb > 0, f(x) € R[0,b], f(z) is bounded on [0, 4], i.e.,

[f@) <M, |f(2) —al < |f(2)] + |a] <M

Therefore,
“+ o0
[t -
0
+oo
<t el -
0
A +oo
—t [ e i@ —al vt etlie) -l
0 A
A +o0
< Mt/ efm"dx+s~t/ e dx
0 A
=M1A—-e ) +ee M0 (t—0")
Thus,
o0 .
lim ¢ - dr =
Jimy /0 e " f(x)dr =a
Q.ED.

16 Necessary Condition for Convergence of Series

Theorem 1 A necessary and sufficient condition for the convergence of the series Y a,, is that
lim a, = 0.

n—oo

Therefore, if the series > a, converges, then lim, . a, = 0.
Below are some commonly used methods to determine the convergence or divergence of series:

Theorem 2  (Cauchy’s Criterion for Convergence of Series) Let > a,, be a series. A necessary and
sufficient condition for its convergence is: Ve > 0,3N > 0 such that for all m > N,p € N, we have

l@m+1 + Gma2 + oo F+ Gmp| < €.
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Theorem 3 (Comparison Test) For a positive series Y a,, if there exists a convergent positive
series > b, and an N such that a,, < b, for all n > N, then the series > a,, converges.

If there exists a divergent positive series Y ¢, and an N such that a,, > ¢, for all n > N, then the
series Y a,, diverges.

corollary 1 Let > a, and ) _ b, be two positive series. If

(1) If 0 < I < 400, then ) a, and ) b, converge or diverge together;
(2) If I = 0, then if > b, converges, Y a, also converges;
(3) If | = +o0, then if Y b, diverges, > a, also diverges.

Theorem 4  (Ratio Test) Let > a,, be a positive series. If there exists an N and a constant ¢ such
that when n > NV,

(1)

Ap+1
— <
0 = 4,
then the series Y a,, converges;
(2)
Ap41 >1
an

then the series > a,, diverges.

corollary 2 Let > a, be a positive series, and

. An 41
lim 2L —

n—00 QG

(1) If ¢ < 1, then the series Y a, converges;
(2) If ¢ > 1 or ¢ = +00, then the series Y a,, diverges.

corollary 3  Let > a, be a positive series.

(1) 1f
lim el q<1l,
n— oo a/,n

then the series Y a,, converges;

(2) If
lim 2+l — qg>1,

n—oo Qn

then the series ) a,, diverges.
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Theorem 5  (Root Test) Let > a,, be a positive series. If there exists an N and a constant ! such
that when n > N,

(1)
Van <1 <1,
then the series Y a, converges;
(2)
Yap > 1,

then the series > a,, diverges.

corollary 4  Let > a, be a positive series, and

lim a, =1.

n— oo

(1) If I < 1, then the series Y a,, converges;
(2) If I > 1 or I = +o0, then the series Y a,, diverges.

corollary 5  Let > a, be a positive series.

(1) 1f L
lim a, =1<1,

n— oo

then the series > a,, converges;
(2) If L
lim a, =1>1,

n— oo

then the series Y a,, diverges.

Theorem 6
(Integral Test) Suppose f(z) is a nonnegative, monotonically decreasing function on [1,400). Then
the series Y | f(n) converges if and only if the improper integral f1+oo f(z) dx converges.

corollary 6
Suppose f(x) is a nonnegative, monotonically decreasing function on [Ny, +00). Then the series
S N, [ (1) converges if and only if the improper integral / ;OOO f(z) dz converges.
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Theorem 7

(Raabe’s Test) Suppose Y a, is a series of positive terms. If there exists N > 0 and a constant r
such that for n > N:

(1) n(1— *2) > 1, then ) a, converges;

(2)n (1 - %) <1, then 3 a,, diverges.

corollary 7

Suppose Y a,, is a series of positive terms, and
hmn—>oo n <1 — L:;rl) =T.

(1) If r > 1, then > a, converges;

(2) If r < 1, then > a,, diverges.

For general series, the following are commonly used tests:

Theorem 8

(Leibniz’s Test) If the alternating series > (—1)"a,, (where a,, > 0) satisfies:
(1) ay, is monotonically decreasing;

(2) limy, 00 an, =0

then the series > (—1)"a,, converges.

Theorem 9
A series that converges absolutely also converges.

Theorem 10
(Abel’s Test) If {a,} is monotonically bounded and ) b,, converges, then > a,b, converges.

Theorem 11

(Dirichlet’s Test) If {a,,} is monotonically decreasing to 0 and the partial sums of > b, are bounded,
then > apb, converges.

e.g.16.1 Proof:

Proof: Consider the series >.°0 , . By the ratio test,

n=1 nm"

_(nt1)!

lim oAD"
n—00 nt
n‘n,
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Therefore,

17 Toeplitz Theorem and Abel’s Transformation

In the process of finding limits, we sometimes encounter problems involving the sum of the products of
two sequences, denoted as lim,,—, > anb,. Sometimes we can attempt to use the definition of the definite
integral or the squeeze theorem. Sometimes, we need to transform the summation formula to solve for the
limit. The Toeplitz theorem can solve a special class of limit problems involving the sum of the products
of sequences. Abel’s transformation (also known as summation by parts) can reduce the ”degree” of the
summation formula, thereby simplifying it into a more straightforward form and making it easier to find the
limit.

17.1 Toeplitz Theorem

Theorem 1 Let ¥y, = an1®1 + ano®s + - -+ + apnty, = Z?:l an;x;. If the following conditions are
satisfied:

(1) an; >0,j=1,2,--- ,n;

(2) Z?:l anj =1

(3) Vj, limy, 00 ap; = 0.

If limy, 00 ©r, = I, then lim,, oo Z?zl an;Zj = 1.

Theorem 2  Let y, = an121 + an2xa + - + appy = 2?21 an;xj. If the following conditions are
satisfied:

(1) 3k > 0 such that Vn € N, |an1| + |anz| + -+ + |ann| < k;

(2) Vj, limy, 00 an; = 0.

If lim,, 00 &, = 0, then lim,,_, oo 22‘;1 an;jZj = 0.

Theorem 3 Let ¥y, = an1®1 + ano®s + - - - + apnty, = Z?=1 an;x;. If the following conditions are
satisfied:

(1) 3k > 0 such that Vn € N, |an1| + |ana| + -+ + |ann| < k;

(2) VJ, hmn—)oonan] = 0;

(3) limy,— 00 ZFI Ty = Lo

If limy, 00 @, = 1, then lim,, oo Z;.Lzl An;Zj = L.

[e.g.17.1.1] lim,_ o x, = a ,prove that:

. aptaxt+---+an
lim =a
n—o0 n

Proof: Take t,; = %, which satisfies the conditions of Theorem 1, thus:

ay+az+---+ay .
lim = lim =z, =a
n—o00 n n—o00

[e.g.17.1.2] If lim,, 00 Xy, = @, limy, 00 Y5 = b ,prove that:

. e T1Yn T T2Yn—1 + -+ Tphn
lim z, = lim =ab
n—oo n—roo n

Proof:
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(1) If a =0, take t,; = ¥t which satisfies the conditions of Theorem 2, thus lim,, s 2, = 0

(2) If a # 0, since !

(1 —a)yn + (22 —a)Yp—1 + -+ (2 — @)1 yi+y2+- -+ uyn
Zn = +a
n n

where the limit of the first term is 0 by (1), and the limit of the second term is ab by [e.g.17.1.1]

[e.g.17.1.3] Let p; > 0. If lim, o poﬂ)l’ﬁ = 0,lim,,_ o0 S, = s ,prove that:
lim Sopn + S1Pn—1+ -+ Supo _ 5
=00 Pot+pr+-+DPn
Proof: Let a,; = Wﬁ"ﬁ, then a,; > 0,37 jan; = 1, and for all j,
0 < ap, Pn—y Pn=y =0 (n—o0)

= <
potpr+-+Pn PotPrLt T Proa

Thus, limy, e Gnj =0
Hence, by Theorem 1,
I Sopn + S1pn—1+ -+ Supo
im =3
n—oo Po+p1+---+pn

17.2 Abel’s Transformation

Theorem 4  Let By = Zle b; with By = 0, then

n n—1
> arby = anByn — Y _(ars1 — ax)Bx
k=1 k=1
[e.g. 17.2.1 (Difficult)] Prove that:
. cosix
lim — = +00
x—0 1
i=1

Proof: First, consider S, = Y i | cosiz = > w Using the identity

=1 sin 4

sina — sin 8 = 2 cos (a—;—ﬂ) sin (Q;B>

me i+ 3)x—sin(i — §)x  sin(n+ })z —sin %

we have

@ dqn &
_ 2sin § 2sin

Thus, S, is bounded. By Dirichlet’s test, the infinite series converges.
Since cos(—x) = cos z, we may assume z > 0 without loss of generality.
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Applying Abel’s transformation, we have

00 .
Z COS 11X
)

i=1

n
. Sz - Sifl
= lim _—
n—00 4 7
i=1

n—1 S
_ 1. K3
v 22+ 1)
i+ 1)
For VO < z < %, choose ng such that
1 U
_ )< = -
z(ng 2) <3 < x(ng + 2)
and use the inequality sinx > %x for 0 <z < 3.
We obtain
i S; - i 1 sin(i+3)z 1 1
22 i(i+1) e 2sing i(i+1)  24(i+1)
1 1 =sin(i+ 1)z
> = 2
2 1 2sin § ; i(i+1)
I 1 sin(i+ )z
z —-+- —
3" b ; i(i+1)
\ 1 L 1 [ sin(i + 3w N i sin(i + §)x
2z < i(i+1) _ i(i+1)
= i=ng
S 1 N 1 [ sin(i + Dz & 1
T2 x| & i+l £~ (i 4+ 1)
1= K2 0
L 1 12”“2*:1 (i+3z 1
- 2 xm i i(it+1l) ang
12 ”0231 1 1
T2 w4+l oang
1 2 4
> -4z _1) —
> —ptzane =1 -5

As z — 0T, ng — oo, thus lim, > o0, €2 = 400,

[e.g. 17.2.2] Suppose {a,} is strictly monotonically increasing and tends to +oo, with a,, > 0, and
> e bi converges to B. Prove that:

lim 721%21 akbi

n—00 Qn,

=0

54



Pengbo Lu—Some Methods to Calculate Limits

Proof: Let B,, = Z?:l b;, then lim,, ,., B, = B. By Abel’s transformation, we have:

> anbe
k=1
n—1
=ap,B, — Z(ai—H - ai)Bi
i=1
n—1 n—1
=a,B, — Z(am —a;)B; + Z(am —a;)B — (an, —a1)B
i=1 i=1
n—1
:alB+CLn(Bn 7B) — (ai+1 70,1‘)(31'73)
1

%

Since
. a1B+a,(B, — B)
lim

n—00 Qn,

=0

it suffices to prove
SN ais — a;)(B; — B)

n—oo an
And
n—1

lim > icq (@iy1 —a;)(B; — B)

n—o0 an

= lim i (@it — ai)(Bi = B) = Y15 (aip1 — ai)(B; — B)

n—o00 Ung1 — Gp

= Jim (B~ B)

Proof completed. .

[e.g.17.2.3(difficult)] For Vm > 2 and m € N, prove that:

n ‘m

) n 1 1
li _ — - _
nLH;oz;nm—Fi-nm—Q m+1 2 m+2

Proof: Before the formal proof, we need to know that

mLqm n 1
S = g o)

i=1

Now we prove this conclusion: It is easy to know that Y. | i = apy1n™ ™ + apn™ + - + an + ap
Therefore,
Z'm

= Aman + am + 0o(1)(n — oo)
1

n

K2

Thus,

R v 1
amﬂ:nh—?;onélnm:/o x dx:m+1
1=
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Then,

>

n
. ] n

i=1
According to the conclusion of Example [e.g.13.1.3] in ??, we have

1 o i™ ! 1
:1. — —_— = ’ITLd =
g ﬁ%o(Zm L ) >

Therefore,

nLgm n 1
E = - 1)(n — oo
Aln"" m+1+2+0( )(n )

1=

Next, we use two methods to prove this problem:
(Method 1) Abel’s Transformation:

Let S, = ., 4™ and apply Abel’s transformation to obtain:

n ‘m

>
nm 4 q.pm-—2

i=1

S — 1 1
=—>" - S;
nm 4+ nm—l Z (nm + (Z + 1)nm—2 nm4q- nm—Q)

i=1

n—1
Sp, Si 1
T 1 ; n™=2 (n? + i+ 1)(n? + 1)

Consider

n -m

: i n
lim E - —
noood=nm 4 q-pm"2  m+1

S, n = S 1
_ 1 n Q 1~ 2
oo <nm+nm—1 m+1> Tl (2 nm—2 (n2+i+1)(n2+z’)>

1=

For the first term:

lim [ —— +1+o() n n
T nSco\m41 2 n+1l m+1
. 1 n
= lim

nsoo2  (n4+1)(m+1)
1 1
2 m+1

For the second term, first consider

n—1 S, 1
1. K2
a8 (Z nm=2 (n? + 0)(n2 + 0)>

i=1
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Then,

By the Cauchy-Schwarz inequality > anb, < /(> a2)(>-02)(an, b, >0), and > a2 < (3 an)?(a, > 0),

therefore,
Thus,
— 72 (n?+i+ (e +1i) = nm2al
_”i:l Si 2n%i4n?+i%+i
A - nmt2 (n24+4)(n?2+i+1)
n—1 S n—1 n2i 2 -5 .72
4 Z i ) Z n<t+n<+1°+1
NS nm+2 P (n24+i)(n?2+i+1)
n—1
S,‘ Mn3
IS ( )
i=1 i=1
n—1 Sz nfl 2
= Z n7n+2 ’ < n2 >
=1 i=1
n—1
Si M?
S z; Tlm+2 ’ <n>
n—1
S; M
= c—= = 0(n —
; e | 7 0 00)
Therefore,

n—1
S; 1 1 1
li = —
- (Z;nm2 (n2+i+1)(n2+i)> m+1 m+2

1=
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Thus,

n ‘m

. Z 7 n 1 1 n 1 1 1 1
im — =_ — — = -
n—oob—~mm4¢.-nm2 m+1 2 m+1l1 m+l m+2 2 m+2

i=1

Proof completed.

(Method 2) Approximation Method

Consider l
7 -m
7 n 1
= - to(l —
> =y ta o) (oo
Therefore,
n im
= Z - o(1)
i=1
Thus,
izlnm—i-i-nm—Q m+1
" i g1
:an‘i‘@ nm— 27an+§+0(1)
i=1 i=1
n im -m,
) 1
= _ "N/ — 1
§<nm+z nm=2 nm> +2+0( )
1 m+1
=_ — 1
2 Znan+l nm— 2)+0()
Consider
n m-+1 n -m+1 n o om+1
) 7 )
D NS X : <>
TL2 (nm + nm—l) 7’L2 (nm 4+ - nm—2) n7n+2
i=1 i=1 i=1
Since .
no om41
- A R S
dm > = e =
1=
and { .
'm+1 ,L-m+1 n 1
S S .1 —
nh—{gozl nz(nm + nm— 1) nl—>nc’>lo — nm+2 nl—>nolo 1+n m+ 2
7 i=
Therefore,
n 'm+1 1
lim =
nﬁm;nQ(nm—Fz nm=2)  m+2
Thus,

. i n 1 1
D S
n—>ooi:1nm+z~nm7 m+1 2 m—+ 2

Proof completed.

18 Superior and Inferior Limits
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Theorem 1  If every neighborhood of a number a contains infinitely many terms of the sequence
{z,}, then a is called a cluster point of the sequence {z,}.

corollary 1  If a sequence {x,} has a convergent subsequence {z,, } with limj_, . x,, = a, then a
is a cluster point of the sequence {z,}.

Theorem 2 A bounded sequence {z,} has at least one cluster point, and there exist maximum
and minimum cluster points.

Definition 1  The maximum cluster point of a bounded sequence {z,,} is denoted by A and is called
the superior limit of the sequence {z, }; the minimum cluster point is denoted by A and is called
the inferior limit of the sequence {z, }. This is denoted as:

lim z, = A
n—oo

lim z, = A
n—oo

corollary 2 A bounded sequence necessarily has both a superior and an inferior limit.

Theorem 3 A sequence {x,} converges if and only if its superior and inferior limits exist and are
equal. That is,

lim z, =A< lim z, = lim z, = A
n—oo n—oo n—00

Therefore, in some limit problems (especially those involving recursive sequences), if we already know
that the sequence is bounded, we can take the superior and inferior limits of the recursive formula separately.
If the superior and inferior limits are equal, then the original limit exists.

[e.g.18.1]Suppose {a,} and {b,} are both bounded sequences, and they satisfy:

lim b, =b, anpy1+ 2a, =0b,
n—oo

Prove that lim,,_, . a,, exists. B
Proof: Since {a,} is bounded, let A and A denote the superior limit and inferior limit of {a,, } respectively.
Due to the properties of limits and sequences, we have:

lim (a, +b,) = lim b, + lim a,
n—o0 n—o0 n—0o0

Also, from the given recurrence relation:

Ap42 = bn+1 + 2(_an+1)
—An41 = —bp + 2ay

We can derive:
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A= lim a,
n—oo

= m Ap42
n—oo
=b+ 2nli_>rr;o(—an+1)
=b+2(-b+2 lim a,)
n—oo

=—b+4 lim a,

n—oo

=—-b+4A4

Therefore:

lim a, =
n—oo

Similarly, we can obtain:

lim a, =
n— oo

Hence:

n—oo

[e.g.18.2] Let xg,y0 € R. For n > 0, define:

1
22 4+ Tnyy +2y2 + 1

Tp+1 =

1
202 + Tnyn +y2 + 1
Proof: (1) limy, 00 (s — yn) = 0; (2) The sequence {z,} converges.
Proof: (1) Note that 2 + zy +y? > 0 for all 2,y € R. It is obvious that x,,,y, € [0,1] for all n > 1.
For n > 1, we have

Yn+1 =

|Tnt1 — Yn+1]
a2y + 202 41 202 @y + U2 + 1
- (@n + yn)|2n — yn|
(22 + oy + 292 + 1) (222 + 2pyn + 42 + 1)
(Tn + Yn)|Tn — ynl
~ 14322 + 2z,yn + 3Y2

< Sl — vl

S| Tn — Yn

=5 Y

Therefore, |z, — y,| < ‘wgn%yf‘ for n > 1. Hence, lim,, o0 (%, — yn) = 0.
(2) Let L = lim,, oo 7, and [ = lim, . %p.

Obviously, 0 < I < L < 1.
Since

(T — Yn)(3Tpn + 2yn)
= 3‘1'31 — TplYn — 2y721

= 4xi - (xi + TnYn + Qyzb)
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Therefore, lim,, o0 [422 — (22 + 2,yn + 292)] = 0.
Then,

lim (22 4 2,y + 2y2) = 412
n—oQ

lim (22 + 2pyn, + 2y2) = 412

n—oo

And since 22 + z,y, + 2y2 = n1+1 —1, we have 4L? = { —l and 41> = 1 — 1.

x

Therefore, 4LI1> + L = 4L21+1=1. If L # 1, then 4Ll = 1 and L 41 = 1, leading to a contradiction since
L=1=1
2
Therefore, L = I, and hence the sequence {x,} converges.

[e.g.18.3] Let 3, > 0, and let f(x) be a bounded function on [—1, 2] and Riemann integrable on [0, 1].
Prove that:

1 & k !
lim —) f(+5n> =/ f(x) d
n—oo N P n 0
Proof: First, we introduce a theorem:

Theorem 4 A Riemann integrable function can be approximated by a continuous function, i.e.,

Ve > 0, there exists a continuous function g(x) such that:

/abf(x)dx—/abg(x)dx

For a detailed proof, see: https://zhuanlan.zhihu.com/p/130394480
Therefore, Ve > 0, there exist f(x) and g(z) such that

L€

1 1 1
hz) < f(@) < ga), /Og(a;)dx—eg/o f(x)dxg/o h(z) do + <

If f(x) is a continuous function on [0, 1], then it is uniformly continuous on [0, 1]. Thus, ¥e > 0,3N >0

such that when n > N,
k k
i (Ge) = ()] <
n n

and

If F(x) € R[—2,1], then:


https://zhuanlan.zhihu.com/p/130394480
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) 1 n ]{3
lim ;F<n+ﬂn>

n—oo 11—

1 ~, (k
> lim —» h{—+8,
> Jim S ()

/Olh(a:)dx
z/olF(a:)dx—E

Therefore,

1
F(z)dx —¢
0

< lim 1iF<z+ﬁn)

n
n—o00 k=1

— 1 k
lim — Fl - '
2 (,ﬁﬁ)

1
g/ F(z)dx +¢
0

IA

Thus,

Lo~ (k !
lim — F{ - = F
s 25 0F (G ) = [ P

However, this is not the end of the proof because f is a bounded function defined on [—2, 1] but Riemann
integrable on [0, 1]. Therefore, the value of % + B, may exceed [0,1]. We also need to consider the case when
k
n + Bn < 0.

In this case, k € [1, —nB,] U [n(1 — B,),n] = S. Then,

nliai2f<ﬁ+ﬁn)|

kes
2B, + 1
< sup f(z)- lim m—)O (n — o)
z€[1,2] n—00 n
Therefore,
1 k
lim — l —
Jim f<n+ﬁn> 0
k,—2<x<0

Thus, we can define

i <zx<
Fla) = flx) TfO_m_l,
0 if —2<x<0.

Then,
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! 1L k
/()f(x)dm:nll_}ngon;F(n-&-ﬁn)

- im S (Gen)

k,0<z<1
1 k 1 k
= lim — - im — —
Jim = f<n+ﬁn>+n11§;on > f<n+5n>
k,0<z<1 k,—2<z<0
I, [k
Jim = f (n +Bn>
k=1
Q.E.D. O

19 Piecewise Estimation

In some limit problems involving definite integrals, such as

b
lim f(n,x)dx

n—oo a

we often see the approach in the solution is to split the interval, particularly around certain specific points
and their neighborhoods. Below, I will provide some typical examples to illustrate how to find the intervals
for splitting.
[e.g. 19.1] Find:
1
lim x"dx
n—oo 0

We observe the integrand and find that when 0 < z < 1, 2 — 0 as n — oo. Therefore, we conjecture
that the integral value within the neighborhood [0,1 — €) is small enough to be negligible (i.e., 0), while the
integral value within the interval [1 — ¢, 1] dominates. Thus, we naturally split the integral into two intervals.

1 1—¢ 1

lim z"dz = lim z"dz + lim " dx
n—oo J n—oo Jq n—oo Ji_.

Since ™ is monotonically increasing, for the first term,

1—¢ 1—¢
/ x"dxg/ (1-¢)"dz<(1—¢)" = 0asn— oo
0 0

1 1
/ z"dr < / 1"dx = ¢
1—¢ 1—e

1

lim z"dr =0
n—oo 0

For the second term:

Thus, it is proven that

The above example is the simplest and most straightforward. However, it also reflects the essence of this
method, which is to find the "extrema points” or "disruptive points” and then split the interval within a
small neighborhood of these points. We hope that the integral containing these points has the same value as
the original integral (or is 0), and the integral not containing these points is 0 (or has the same value as the
original integral). In general, "disruptive points” can be roughly classified into two types:
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Definition 1

(Disruptive Points):

Type I: The function f(n,x) has a limit at = z; with respect to n that is not 0 (it can be infinity),
and the limit at other points is 0;

Type II: The function f(n,) has a limit of 0 at = x; with respect to n, and the limit at other points

is not 0.

When solving the limit

b
lim f(n,z)dx

n—oo a

we generally proceed as follows:

1. We find several disruptive points z; € [a, b]

(1) If z; includes an endpoint of the interval [a, b], we can split it into [a, a+¢] J[a+e, b] or [a, b—e] U[b—¢, b];
]

(2) If it includes both endpoints, we can split it into [a,a + €| J[a +&,b —
(3) If it includes a point z; within the open interval, we split it into [a, 2;

U[b -5 b]a
—Ei} U[l‘i—Ei,Jﬁri-&i] U[xi—I—Ei, b]

2. We sum the integrals over intervals containing disruptive points and over intervals not containing

disruptive points.
Then, generally:

(1) When all disruptive points are of Type I (the following equation does not include endpoints; if an
endpoint is a disruptive point, it should be added):

k xit+e; b
lim Z/ fn,z)de = lim f(n,z)dz
1 X

n—00 : i—es n—oo [,

(2) When all disruptive points are of Type II (the following equation does not include endpoints; if an
endpoint is a disruptive point, it should be added):

k

Tite;
lim Z/ f(n,x)dz =0

[e.g.19.2] Suppose f(z) is Riemann integrable on [a,b]. 0 < f(z) < 1,z € [a,b), f(b) = 1, find:

Solution:

b
lim M (x)dx

n— oo a

b b—e b
[ rwae= [ @ [ @

b—e

For the first term, by the Mean Value Theorem for Integrals, 3 £ € (a,b —¢) s.t.

For the second term,

Therefore,

b—e

fH(@)de < [ (€)(b—a) =0

(n — 00)

b b

1"dr = ¢

"(x)d
b—e f <m) = /b—e
b
lim f*(x)dz =0

n— oo a
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Let’s give some specific examples:

[e.g.19.3] Calculate:

™

2
lim sin” zdx
n— o0 O

s T_¢ ks
2 N 2 b ) 2 M
sin” xdx = sin” xdx + sin” xdx
0 0 L —¢

2

Solution:

For the first term:

R T T
sin™ zdx < §sm"(§ —e)—=0 (n— o)
0

jus usy
2 2
/ sin” zdx < / 1"dz = ¢
5—€ 5—¢

™

lim ’ sin” zdx = 0
n— o0 O

For the second term:

Therefore,

[e.g.19.4] f(x) € R[0, 1] is continuous at x = 1, prove:

lim n/o 2" f(z)dx = f(1)

n—oo

Solution: Since f(z) is Riemann integrable on [0, 1], it must be bounded, denote the bound as M, and

/01 2" f(z)dx = /01_E 2" f(x)dx + /11 2" f(x)dx

—€

For the first term, by the Mean Value Theorem for Integrals, 3 £ € (0,1 — ¢) s.t.

1—¢ 1—¢
In / 2™ f(2)da] =mle" / f(z)dz| < n(1— €)™ - sup | ()]

For the second term,

o 15 o f(ade =nf(€) | 15 oo = 1) (o - 00T

where 1 —e < & < 1.

Our goal is to make the first term tend to 0 and the second term tend to f(1) (since ™ dominates and
2z =1 is the maximum value). We only need n(1 —¢)” -0 (n — o0).

We take ¢ = ﬁ, then

lim n(1—¢&)"

n—o00
. 1

= lim n(1 - —=)"
n—o00 \/ﬁ

= lim nenln(l*ﬁ)
n— oo

— lim enln(l—ﬁ)—&-lnn
n—o00

— lim "R am o) Hnn
n— oo
= lim e—f—%+lnn+o(1)

n—roo

=0

65



Pengbo Lu—Some Methods to Calculate Limits

Thus,

1
lim n/ 2" f(x)dx
n— oo 0
1
= lim n/ 2" f(z)dx
1—¢

n—oo
n 7n(175)
n+1 n+1

= lim f(¢) (
= lim f(¢)

n—oo

= lim f(£)

=1
= f(1)
Therefore,

Jim n/o 2" f(@)de = F(1)

n—roo

The method of this proof is not difficult to think of, we can use the interval splitting method, but we need
to find the appropriate (n) to solve it.

[e.g.19.5] f(x) € C[0,1], prove that:

! n Lop
nlggo o 1+ n2z? f(w)de = hlgg+ o z2+h?

Z f(0)

f(z)dz = 5

Proof: We only need to prove that

) L' h T
Jm [ el ele = 510)

Then, by Heine’s theorem, taking the sequence x,, = % — 07 (n — +00), we have

1

1
li —_T de = li
s o x2+(%)2f(x) pr=1m o 1+ n2a2

s fa)de = 3 £(0)

Next, we prove that

1
. h T
;}L%h/o w2y @de = 5f(0)

We observe that the integrand takes its maximum value (tending to infinity) as = approaches 0. Therefore,
we partition the interval in the neighborhood of x = 0.

Then: / 1
h € h h

For the first part, applying the mean value theorem for integrals:

£ h € h E
[ s t@in = 50 [t = s amctant)
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For the second part,

Lo
|/}S mf($)d$|
L' h
SmaX|f(x)||/E mdw\

=M. |arctan(%) - arctan(%ﬂ

Thus, we need to find an e such that

li tan(S) = =
1m arctan(—) = —
h—0+ h 2

In fact, taking e = v/ suffices, then we have
.  h . € T
hlig{r/o mf(l“)dm = hlgéﬁr f(&) arctan(ﬁ) ® §f(0)
And also

. 1 €
hlir(r)lJr M - [arctan(ﬁ) - arctan(ﬁ)] =0

Therefore

1
. h
hh%h/o 2z @de

S h Y'oh
- 1.
N e e
s
250

Sometimes, the problem may not necessarily require finding a limit, but rather comparing sizes, etc. Parti-
tioning the interval can also be considered.

z
an:/t
0

—n?ast — 0T (since n can take infinitely large values, we consider this

[e.g.19.6] Suppose that:

sin(nt) |

dt
sin(t)

Prove that ) =& diverges.

, 3
Proof: We observe that b;?rfgg)

point as the ”disruptive point” or ”point of maximum value”). (The function is bounded at other points),
sin(nt)

therefore we consider:
5 €
t dt = t
/0 /o sin(t)

Since we are not seeking a limit, both integrals can be bounded but will not be zero.

To prove that > i diverges, we only need to prove that a, < kn (where k > 0), then > é >3+
which diverges.

For the first part, we first prove the fact that |sinnt| < n|sint|.

We use mathematical induction to prove this:

1. When n =1, it is obviously true;

2. Assume it holds for n < k;

sin(nt) |

sin(t)

. 3 x 3
sin(nt) ’ it /2 . ’ i
€

sin(t)
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Then for n = k + 1:

Therefore,

|sin(k + 1)x| = | sin(kx + x)|

= | sin kx cos 2 + sin x cos kx|

< |sin kz cos z| + | sin x cos kx|

< |sin kz|| cos x| + | sin z|| cos kx|
< |sinkx| + | sin x|

< k|sinz| + | sinz|

= (k+1)|sinz|

€
|
0

. 3 €
sin(nt) it < n3/ tde — g2n3
sin(t) - 0 2

For the second part, since sinz > %m for0<z< g, then

3

sin(nt) dt

sin(t)

Therefore, we need to find an e such that

Here we choose € = %, then
Thus,

Therefore, > -1 diverges.
n

2,3 71_3

2 8¢

1 11
Z£>10

n
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[e.g.19.7] Find:

1
. 2
lim 2x - arctan(nz) - €¥ dx
n—oo 0

Solution: The integrand tends to 0 only when x — 0, so the disruptive point is z = 0. Then

1

/ 2x - arctan(nz) - e dx

0
£ 1

v 2 2

= / 2z - arctan(nz) - €” dx + / 2x - arctan(nz) - e* dx
0 1
v

So
+
0< = / 2x - arctan(nz) - e dz
= O 1
< "2 arctan(n—=) - e da
J =
= arctan(yv/n)(e* —1) =0 (n — 00)
1
2
I, = / 2z - arctan(nzx) - e dz
1
2
= arctan(n{)/ 2x - €% dx
3
= arctan(né)(e — e%) — g(e —1) (n— o0)
Therefore,
1
lim 2x - arctan(nz) - e dx = g(e -1)

n—oo 0

20 Arzela’s Dominated Convergence Theorem

In the previous section, we used the method of dividing the interval and estimating piecewise to calculate
limits of the form lim,_, f; fn(x)dz. Naturally, we would think that if the limit and integral can be
exchanged in order, it would be more convenient to first find the inner limit, so that

b

b
lim fn(x)dx:/ f(z)d.

n—oo a

Below, we introduce several definitions and theorems to ensure that we can operate in this way:

Definition 1 (Uniformly Bounded) Let {f,(z)} be a sequence of functions. If there exists M > 0
such that for all n and x € D,
[fn(2)| < M,

then {f,(x)} is said to be uniformly bounded on D.
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Definition 2  (Pointwise Convergence) Let {f,(x)} be a sequence of functions. If for any z¢ € D,
lim,, 00 fu(xo) = f(x0), i-e., Yo € D (given xy beforehand), Ve > 0, there exists N > 0 such that
when n > N,

|fn(z0) — f(20)| <,

then the function sequence f, () converges pointwise to f(x).

Definition 3  (Uniform Convergence) Let { f,(z)} be a sequence of functions. If Ve > 0, there exists
N > 0 such that when n > N, for Vz € D,

[fn(z) = f(2)] <e,

then the function sequence f,(z) converges uniformly to f(z).

Theorem 1  Let {f,(x)} converge uniformly to f(z) on the closed interval I = [a,b], and let each
term be continuous. Then:
1. f(=) is continuous on [;

2
b

b b
lim fn(af)dx:/ nli_)rréofn(x)dm:/ f(x)dz;

n—oo a

L f,@)] = tim L @),

dxr ln—=oco n—oo dx

Theorem 2  (Arzela’s Dominated Convergence Theorem) Let {f,(x)} (with z € D = [a,b]) be a
sequence of functions satisfying:
1. For any n,z, f,(z) is Riemann integrable;
2. {fn(x)} is uniformly bounded on D;
3. limy, o0 fr(x) = f(2) (uniform convergence is not required), and f(x) is Riemann integrable on
D.
Then
b

b b
nh_{rgo fn(a:)dx:/ nli_)rréofn(x)dx:/ f(z)dz.

[e.g.20.1] Solve for:
1
lim x"dx
n—oo 0

Solution: Since

. n 0 ,ifo<x<1
lim z" =
n— 00 1 7ifx::]_
therefore
1 1—¢ 1
lim 2"dx = lim 2"dx + lim 2dx =1 + I
n—oo J n—oo J, n—oo Jq_,

For the first term
l1—e 1—¢
I; = lim " dx :/ lim z"dx =0
0 0

n—oo n—oo

For the second term ) )

I, = lim z"dr < lim 1"dx = ¢
n— oo 1—5 n— o0 1—5
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Thus
1

lim z"dr =0
n—oo 0

Through this problem, we can see that if lim, o fn(z) = f(z), then the discontinuity of f(z) at the
endpoints does not affect the integral value (provided it is integrable). Therefore, for such problems in the
future, we do not need to consider the endpoints or split the interval.

[e.g.20.2] Solve for:

i Looat
1m e —
n—oo Jo (144"

1 1 1
dt dt
li —_ = lim —— = 0dt = :
oo Jo (14 ¢4 /0 oo (14 4)m /0

Solution:

[e.g.20.3] Solve for:

lim n/ da (a>1)
1

n—00 1+

Solution: Let t = %, dx = —t%dt, then

1
¢ d a1 1 L2 bopgnt
lim n/ Y _ lim n/ — | —zdt ) = lim " dt = lim / nidt
n—oo 1 1+ zm n—o0 1 1+ o t2 n—oo J1 14+ t" n—oo 1 t(l + t”)

Because

1 n—1
t
lim/ ERL—T
|
= lim [ Sdn(1+47)

n—oo [1
1 Un(1 +¢»
—1n2 — lim aln <1+> + lim / (L +#")
n—o00 am™ n—oo 1 t2
1
In(1 4+ t™
ot tm [ RO,
n—oo [1 12
When é <t<l,
In(1 +¢t™ "
tim 2O P
n— o0 t2 n—oo 2
Therefore ) 1
In(1+¢™ In(1+t™
lim Mdt:/ lim Mdt:o
n—oo [1 t2 1 n—o0 t2
Thus

[e.g.20.4] Solve for:
1

. .2
lim 2z - arctan(nz) - € dx
n—o0 0
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Solution:
1

. 2
lim 2z - arctan(nz) - € dx
n—oo 0

1
= / lim 2z - arctan(nx) e da
0

n— oo

1
:/ 2x-E-em2da¢
O 2

1
= 72T ‘/0 ea:Qd((EQ)

=|5e-1)

21 Laplace Method

When solving limits of the form lim,, f: fn(x)dz, one approach is to find the ?maximum points” or ”points
of discontinuity”, and then manually split the interval to isolate these points, calculating the limit for each
segment separately.

Another method is to use the Arzela-Ascoli Theorem to exchange the order of integration and limit.
Among these, for a special type of limit like

b
lim o(z)e™ @ dzr (x)

n—o0 a

we can use the Laplace Method to solve it.

The Laplace Method is an effective method for limits of integrals, essentially identifying the ”concentration
point of order,” i.e., which part dominates as n approaches infinity. This theorem primarily addresses limits
of the above type:

If we have an integral limit like

b
lim [ o(x) f"(x)de (f(z) > 0)
n— o0 a
we can let h(xz) = In f(z) to convert it into a limit of type (x). The following outlines the main content
of the Laplace Method:

Theorem 1  (Laplace Method): Suppose ¢(x) and h(z) are defined on [a, b], and:

(1) There exists ng € N, such that for all n > ng, p(z)e™*®) is integrable on [a, b];

(2) 1. There exists a unique point ¢ € (a,b) such that h(§) is the maximum value of h(z) on
[a,b], 2. For any closed interval [«, 3] that does not contain &, ie., & ¢ [a, (] C [a,b], we have
SUP¢[a,f] h(l‘) < h(f),

(3) Within a small neighborhood of &, h”(x) is continuous and h”(§) < 0;

(4) ¢(z) is continuous at z = £ and ¢(§) # 0.

Then, as n — 0o, we have

b 27
nh(zx) ~ _ nh(§)
/a 90(.'1:)6 d‘/I; 90(6) nh//(g)e

Let’s explain these conditions first.
Firstly, it is obvious that ¢(z) and h(z) are defined on [a, b] because the range of x in the definite integral
is [a, b];
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Secondly, condition (1) requires that ¢(z)e™(®) be integrable for sufficiently large n, as we are seeking

the limit and can thus ignore the finite number of terms at the beginning;

Condition (2) embodies the idea of piecewise estimation but requires that h(x) has only one maximum
point that is not at an endpoint. The second part addresses certain discontinuous functions that have only
one non-endpoint maximum but may have points of discontinuity of the first kind. For example,

x, 0<z<1
—r+2, 1l<x<2
Mz)=<z—-2, 2<zx<3
0, r=3
—x+4, 3<xr<4

1 9
0.5 / \ \
h )
0.5 1 1.5 2 25 3 35 4

4

4.5

0.5

Figure 1: Graph of h(zx)

h(z) has only one maximum point z = 1 on [0, 4], but on [2, 4], sup, ¢, 4 h(z) = 1, which does not satisfy
the second part of condition (2). Conditions (3) and (4) are required to make the intermediate derivations
and results meaningful.

For convenience, let’s recall the O notation. It is defined as:

If g(x) > 0, there exists A > 0 such that |f(z)| < Ag(z) (x € D), then we write

Property: If [ f(z)| < O(g(z)), then f(z) = O(g(x)).
Proof: Since

it follows that

Below is the proof of the theorem:

Proof:

Firstly, we determine an ng. In fact, we only need to take ny = 0, because if it has already been proven
for ng = 0, then the theorem holds for all n such that

n>ny >nyg=0
We first partition the integral interval. Since £ is the point of maximum, we isolate the point &.
Since this differs somewhat from our previous discussion (which was about finding limits, while this is

about proving equivalence, which is equivalent to finding the order), we need to partition the interval more
precisely, i.e., near the & point. Therefore, it will be more convenient for us to discuss [£ — €,& + €].
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And we need to use the derivative of h(z) in the proof, so we need to partition an additional interval to
ensure that h(z) is differentiable (or second-order differentiable) in that interval.

Therefore, we choose a small § > 0 such that h”(z) < —k < 0 for € [§ — §,£ + ] (second-order
differentiable with an upper bound).

We calculate

2 2
5

£—06 - E+n 5 E+46
/ ()€ =hO)] gy — / / / / Jenlh(@)=h(©)] gy
. . t Jeant Jews

Denote each integral as Iy, Is, I, I4, Is. Then I = I + Is + I3 + I + I5 (we will see why we partition the
interval this way later).

Let
m' = sup [h(z)—h(£] <0
z€[a, 6]
then
£—46
I = / ()@ RO gy
a
Then enlh@)=h@] < 1.enm’ e enlh(@)=h(©)] = O(e™). And fg 0 x)dz is bounded, i.e. f§ 0 (z) <
M. Then

’ 5_6 ’ ’
I = O™ )/ o(z)dz = O™ - O(1) = O(e™™)
€)] <0, then Iy = O(e™™").

h(
Next, we discuss Io. On [ — 6,6 —n~ 3], h(x) is second-order differentiable. Since h(€) is the maximum
and continuous near &, h'(§) = 0.

Similarly, if we let m” = sup,¢(eysp[h(z) —

hw) = h©)+ 0@ g2 = eroa-9. 0<o<
Combined with the previous condition h”(x) < —k < 0 for € [ — §,& + ], we have
n" k
) ~he) = 0w g2 < B gy

I
5
K
S—
[y}

|
vl
3
19,
ISy
=

k

1
Similarly, Iy = O(e”2"%).
Next, we estimate I3. By the mean value theorem for integrals, we have

2
5

e+
I — / " o) @M Ol gy = () / (@) =h©)] g
g-n-?

_2
g-n"%

¥
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Since limy, o0 ¢(&,) = ©(£), we have
P(&n) = (&) +¢(&) - o(1) = (&) (L + (1))
Thus,

I3 = (&)1 + 0(1))/ (@) =) gy

Let S=1[¢ — n_%,é—i—n_%], and
a=minh"(z), A=maxh"(z)

€S eSS
Then
a=h'"(€1+o(1), A=n"(£)(1+o(1))
Since W) A
a n
Lo -0 < h() () = L@ -7 < Slw— &)
we have
£+n7% " R §+n7% E+n7% b 2
/ RPEICOP g/ @ h Ol gy S/ 9 g
—n”% &-n"% ¢-n"%
Calculating the left-hand integral, let f%na(x —&)? =9y?% sodr = ~%dy. Therefore,
e I
Tiept =/ , "2y
g-n%
VR
:/ e Y ——dy
_ /T%.nﬁ na
2 +oo +o0 —\/~&nio
"V na (/ -/ , 7/ 2 )ey2dy
na —o0 —4$ni0 —o0
Since

+o0 R
/ e Vidy=+/m

—0o0

when n is sufficiently large, the last two terms tend to 0. Therefore,

Then
Ileft:W/_ia(l—i_O(l))\/;r_ —%( +0(1))7 (TL-)OO)
Similarly,
Toione = | ——2F (14 0(1)), n — oo
right — nh”(f) )
Thus,
I = €))L o). n oo

75



Pengbo Lu—Some Methods to Calculate Limits

Then

=

b
L?/wmeW4ﬁmx:wa —m%5a+na»+owmd+owmﬁ+0@%W>

<

Since m/, m” < 0, we have

1
5

O™ )+ 0(e™ )+ 0(e™ 5" ) 5 0 (n— o)

Thus,
2w

b
n[h(z)=h(&)] 1, — —

(14+0(1)) (n— o0)

Multiplying both sides by e gives

b
nh(x) ~ _ 2m nh(§)
[ el e~ ol [~ e (n o)

This completes the proof of the theorem.

Note: If a or b is oo, it is only necessary that ¢(x)e™(®) (for n > ng) be integrable over the infinite
interval.

We use this theorem to derive Stirling’s formula.

[e.g.21.1]Proof:

n! ~V2nm (%)n (n — c0)

Proof: Consider

P(n+1)= / y e Ydy = n"T! / (ze”")"dx  (substitution y = nx)
0 0
Then we can take

a=0, b=+o00, ¢(x)=1, h(z)=he-z =1

Therefore,

2 n
nl ~o L [Z e = o (E) (n — o0)
n e

But in practical problems, we often encounter situations where the maximum value occurs at an endpoint.
We need to slightly modify the conditions and conclusions. Below are two theorems that address the situation
where the maximum value occurs at an endpoint. We only consider the case where the maximum value
occurs at the left endpoint £ = a, and the case where the maximum value occurs at the right endpoint can
be converted to the left endpoint through variable substitution.

Theorem 2

Suppose ¢(z) and h(x) are defined on [a, b], and:

(1) 3ng € N, such that for Vn > ng, o(z)e™™®) is integrable on [a, b];

(2) 1. h(a) is the maximum value of h(x) on [a,b],

2. For any closed interval [a, B8] that does not contain a, we have sup, ¢, 5 h(x) < h(a);
(3) In some right neighborhood of a, h’”(z) and ¢(x) are both continuous;

(4) W' (a) =0,h"(a) <0, and ¢(a) # 0.

Then as n — oo, we have

b
h w h
[ oo e~ olay =g
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Sometimes, h'(a) = 0 may not be satisfied, so we have the following theorem:

Theorem 3

Suppose p(z) and h(x) are defined on [a, b], and:

(1) 3no € N, such that for Vn > ng, p(z)e™®) is integrable on [a, b];

(2) 1. h(a) is the maximum value of h(z) on [a,b], 2. For any closed interval [a, 8] that does not
contain a, we have sup,c,,5 M(z) < h(a);

(3) In some right neighborhood of a, h'(z) and ¢(x) are both continuous;

(4) W' (a) < 0 and ¢(a) # 0.

Then as n — oo, we have

b
nh(z) ~ QO(CL) nh(a)
/a p(z)e dx 7nh’(a)e

[e.g.21.2] Calculate:
1

lim " dx
n—oo 0

Solution: Let t = 1 — x, then dz = —dt, thus

/01 e"dr = /01(1 — )t = /01(1 —a)"dz

o(x)=1,h(z) =In(1 —z), £ =a=0,h(0) =0,A' (0)=-1<0

Let

Then using Theorem 3, we immediately obtain

/ (1= 2z)"dz N% (n — o0)
0

Therefore )
nhﬁrr;o ; x"dx = @
[e.g.21.3] Calculate:
lim sin” xdx
n— o0 O

Solution: Let t = 3 — x, then dx = —dt, thus

™

5 El El
/ sin” xdx = / cos" tdt = / cos” xdx
0 0 0

o(x) = 1,h(x) = In(cosx),& = a = 0,h(0) = 0,h'(0) = 0,h"(0) = -1 <0

Let

Then using Theorem 2, we immediately obtain

3T ~ —_
/0 cos” zdx o (n — o)

Therefore
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[e.g.21.4] Calculate:

lim /7 / CcoS T

n—o00 ]_ =+ xz

Solution: Let
a=0,b=00,p(z)=cosz,h(zr) = —In(l +2?),£ =a=0,h(a) =0,h"(a) = 2

Then using Theorem 2, we immediately obtain
* cosx 1 /n
————dr ~ -/ — —
[ 2\/; (n = )
lim \F/ T gr— lim \F 1/
n—oo n—oo

1 . n
lim \/ﬁ/ (Smx> d
n—o00 0 T

i 1
Slzm),g =a=0H(a+0)=0.1"(a+0)= 3

Therefore

w\%

[e.g.21.5] Calculate:

Solution: Let

a=0,b=1,p(x)=1,h(x) =In(

Since it is undefined at = = 0, here we use the right limit at this point, and Theorem 2 can still be applied,
yielding:

L ging ™ 67r
/o(x )d$~§ - (n — o0)

Therefore

Vo
2

1 .
lim \/ﬁ/ (smx dxf lim \f
0 X

n— oo n—oo

[e.g.21.6] Calculate:

k 2 n
M: lim I+ +5r+-+ %

n!

lim
n—00 en n— 00 en
Solution: Since the Laplace method can only solve limits involving integrals, this problem only has a limit
but no integral, so we need to construct one. Observing the numerator, it is actually the Taylor expansion of
e up to the n-th term. Therefore, we naturally think of using the Taylor formula with an integral remainder

term. Namely:

(n)
@) = foo)+ £ @) a =)+ Lo @y 5 O -
First take f(x) = e, then
e’ :1+x+%x2+~-~+%1:+% Oxet(x—t)"dt

Substituting = = n, we get

n_qp4 £)ndt
en = +1,+§+---+—+— (n—
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Thus

We consider

/ el(n —t)"dt
0

1 1
/” et(n _ t)ndt — nn+1 / enz(l _ x)"d;c — nn+1 / en[ar:—&-ln(l—ac)]daj
0 0 0

Let t = nz, dt = ndz, then

Take
a=0,b=1,0()=1h(z)=z+In(l —z),{ =a=0,h"(a) =0,h"(a) = -1
Then by Theorem 2, we get
1
/ en[a:Jrln(lfw)]dx & l(n — OO)
0 V 2n
So . )
1 —t)"dt n"t
lim —fo cln-1) = lim ul
n—oo n) en n—roo mlemn 2n
By Stirling’s formula n! ~ v/2n7(2)" (n- — o0), we get
n+1 T n+1 T 1
lim ——/— = lim ——/— ==
n—oo nlem 2n n— o0 277/]'(( )nen mn 2
Therefore

2 n
LbfitSr ot
en

lim
n— o0

[e.g.21.7] Let f(x) = 1 — 22 + 23 and calculate the following limit

GG 2)d
Jo (@

Solution: We find that ”h(x)” has two maximum points = 0,z = 1 within the integration interval, so we
need to split the interval. We can split the interval [0,1] = [0, 3] U [3, 1], thus:

/0 (@) In(z + 2)dz = /o f(x) In(z 4+ 2)dx + /; (@) In(x 4+ 2)de = I + I

Tl*}OO

For I;: take
1
a=0,b= 5,30(1‘) =1In(z +2),h(x) =In(1 — 2 + 2%),6 = a = 0,1/(0)
Therefore, by Theorem 2, we get

I ~n2,/ =
4n
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For Iy, let t =1 — z, then
>

12:/ (17t+2t27t3)"ln(37t)dt:/2(1*Z+2$2*$3)nln(3*$)dx
0 0

Take )
a=0,b==,0(x) =n(3 —z),h(z) =In(1 —z +22° —23),6 =a =0, (0) = —1

2
In3 1

I ~N — = e

> O(ﬁ)

Therefore, by Theorem 3, we obtain
1 3 1
| o= [* st [ s =11y
0 0 1

fof" 1n:c+2)d i In2 4’L+0<1n)

= lim 1
nﬁoo n n—o00
fg f ﬁ “+ o0 (7

Similarly, for

Thus,

n

22 Riemann’s Lemma

Theorem 1  If f(x) is integrable on [a,b] and g(z) is a periodic function with period 7" and is
integrable on [0, T, then:

b T b
Jim [ @)z = 7 [ o@e [ pe)is

[e.g. 22.1] Calculate:

! 22| sin nz|

dx

lim
n—oo J 14+ 22

Solution: Let f(z) = %, g(z) = |sinz|, and T' = 7. Then

1 2. T 1 2
2| sinnx 1 T
lim |b2|dac = f/ |sinm|d:1:/ ——dx =
nsoo fy 14x T Jo 0 14+ a2

[e.g. 22.2] Calculate:

N =

ENEN

lim ™ | sin(nx) + cos(nx)|dx
n—oo [ x

Solution: Let f(z) =1, g(x) = |sinz + cosz|, and T = 7. Then

2v/21n2

™

lim
n—oo [ X

) 2
" | sin(nx) + cos(nz) / i ldx /7T |sinx + cosz|dz =

[e.g. 22.3] Calculate:
! sin?(na)

e

Solution: Let f(z) = ﬁ, g(x) = sin®z, and T = 7. Then

1 .. 2 1 T
1 1
T L GO R / RS / sin? zdz — |
n—oo Jq 1 + 372 ™ Jo 1 + 1‘2 0 8
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. ™ sin 2ty T . .
[e.g. 22.4] Given ———=-—dx = _—, prove Dirichlet’s integral:
0o 2sing 2

. " sinx T sing s
lim dr = der = —
n—00 0 e 0 X 2

Proof: Consider

4 1 1 1 4 1 1
lim ( — — ) sin (n + ) xdr = lim < — — ) sin(nx)dx
n—oo Jo \28in§ 2 n—oo Jo \28in§

Let f(z) = 5= L g(z) =sinz, and T = 27. Then

2sin 5 T 9

i 1 1 1 1 [ 4 1 1
lim ( - r)sin<n+)xdx/ sin:z:dx/ < — >dx0
n—oo Jo \2s8in3 @ 2 21 Jo 0o \28in35 x

) T sin %x T
Since ————=——dzx = —, then
0

QSin% 2

lim
n—oo [ x n—o00

™ sin(n + %)xd:c i /” sin(nx) die T
0 X

Let t = nz and dx = %dt. Thus

no.

. sin T
lim dr = =
n—oo Jq T 2

That is

. " sinx T sinz T
lim dr = de = —
n—oo Jq T 0 2

23 Special Functions

In some limits involving integrals, especially when evaluating improper integrals, we may encounter several
types of special improper integrals. If we are familiar with these conclusions, we can easily obtain the results.

23.1 The I' Function

The T function (Gamma function) is the most fundamental and important function among special functions,
and many special functions can be represented as combinations of it. Therefore, the I" function has numerous
applications.

Definition 1

Theorem 1 Recursion Formula:

Complement Formula:
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Theorem 2

Theorem 3

corollary 1

(Limit Definition)

n*n!

I(x) = nlgr;o z(z+1)---(z+n)

(Infinite Product Definition)
1 z\ 1 1\*
I(z) = - (1 f) 1+-) -1
(2) anlexp( +n < +n> )

I'(z) = %e*”'z ﬁ exp ((1 + %)_1 en — 1)
n=1

n t n
I'(z)= lim [ ¢! (1 - ) dt
0

n—00 n

[e.g.23.1.1] Calculate:

n!
B PR T I Y Py L R

(Method 1) According to the limit definition of the I' function, we know

a

| aml
n e - lim — =T(a)-0 =

lim

n—oo (a+1)(a+2.)---(a+n)

A2 ala+1)(a+2)---(a+n) nooon®

[0]

(Method 2) Since a > 1, there must exist a positive integer b such that 1 < b < a < b+ 1, therefore:

Since b > 1, then

Therefore,

Hence,

n! n!
Ry P RS R CFary
n!
T (B CET))
n! n!
SOTD0TD Gtn) - mro
n! b+ 1!
ot s T
0 n! B b!
“(n+bd)! T n+1
! . n!
A it D i bt =0

lim n! = @

n—oo (a+1)(a+2) - (a+n)
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[e.g.23.1.2] Calculate:

Solution: )

1 1-2ir(:
lim (n—F()) = lim o (")
n—oo n n—o00 by
Therefore, it suffices to calculate
. 1—aT(x)
lim
z—0*t x

and then apply Heine’s theorem to obtain the original limit. Since

Iz +1) =al'(x)

we have
lim 1—al(x)
z—0t xT
1-T
_ i L=TE+D)
z—0t x
.
= lim 7@4— D)
r—0t 1
- —1'(1)

Next, we find IV(1). Since

d +oo +oo o +oo
IM(z) = —/ e dy = / —a* e dr :/ x
dz Jo 0 0z 0

Let z =1, then

z—1

e *Inxdx

“+o00 1 “+o0
(1) :/ e lnxdx:/ efrlnxdx—k/ e “Inzdr
0 0 1

Il 12

And since

_(671‘ — 1) lnx% = 11%(671 — 1) Inz = hm(—l‘) Inz =0
T—

e “—1

we have I} = fol dz. Similarly,

“+o0
I, = / e *lnxdx

—+oo
= 7/ Inzd(e™™)
1
e—.’K

+oo
=—(e ") Inx|{> —l—/ —dzx
1

T

=
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so Iy = 1+oo e;”d:c. Then

1 _—=z +oo _—=x
—1
F/(l):11+12:/ € dl‘+/ © dl’
0 z 1

From Arzela’s Dominated Convergence Theorem, and

lim (1 — £>n =e*

n— oo n
we have . . " . "
—r_ 1—o)"—1 1—2)" —1
Ilz/ ¢ dx:/ lim %da‘: lim %
0 €T o Moo €T n—oo Jq
+oo -z +oo 1—z\" n
I = / € dr= / b 78 gy g [ )
1 €T 1 n— o0 €T n—oo [y
Therefore,

I'(1)

r 1 oz n _ n oz n
|| (O N / de]
n— o0 0 T 1 T
[ n 1—2 no_ 1 n
= lim / (”)der/ 1d4
n— o0 0 T 1

= lim / Mdaﬂrlnn
0

n—oo

For I3, let t = 1 — &, dxz = —ndt. Therefore,

n(1-2)" -1
]3:/ %dx
0

T

1
1—¢"
:_/ dt
1
:—/ (Lt+t2 4 +t"1)dt
0

1 n
z—/ > it
0 k=1

:—zn:/lt’“dt
k=170

"1
:72%

k=1

Then

Therefore,
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[e.g.23.1.3] Calculate:

lim
n—oo n
Solution:
(D).t 1 1)...
rmre e ,\L/F(l)r(2)
n—oo n n—o0o nm
We know that if lim,, aZII =1, then lim,, o {/a, = 1.
Let
Crdrd)-re)
n n,n
Then
(- n
lim 224 — lim <”“)<1— 1 )
n—oo I, n—oo n+1 n+1
1 1 . o .
nhféor<n+1)n+1:ili%xnx)_if‘or(“l)_l
Therefore
ST (). 0 (L n
L rere) <>_hm<1 | ) B

[e.g.23.1.4] Calculate:

Then

) r(1- k) sin (%)
= l1im
n%wr(l_ 1 )Sin( s )
n+2 n+2
(1 ) (%)
. n+1 n+1
- nh—>Holo 1 s
'1-am) iz
1
I F(l - n+1)
o nl—{go 1
r(1- )
_r@
- T
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[e.g.23.1.5] Proof:

mbleta) 29

Proof: By the complement formula, we have

1 1
F( +2>F(1_ +2>: .
n n . s
an ()

Therefore:

) 1 1
= lim 7 —
nreo T (1 — ﬁ) sin (ﬁ) T (1 — ﬁ) sin ﬁ)
b s F(l—n%‘_l) sin(nil) —F(l—ﬁ) sin (ﬁ)
=\ (1= s ) sin (55) -0 (1= k) sin (535
r (1 - ﬁ) sin (ﬁ) -T (1 - ﬁ) sin (ﬁ)

= m €2 N ¢
2 T 1

- o (§)r ()

-1

[e.g.23.1.6] Calculate:

GG
()

Solution: Let
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Then

= ()

1 .
= — lim
e n—oo ES

= — lim
e n—oo

lim (elnanJrl o 6lnan)

n—oo

lim a, (61““"“711“1" — 1)

n—oo

.on ng1
lim — (eln an 1)

n—oo €

Inay+1 —Ina,

1
n

a1 Lk 0 (1) — 3 35k, T (3)

1
n

Combine the numerator:

RS () -4 mr ()

n—oo %
i Sl (H) + T ()
= lim T
n— oo 5
~ i InT () +nhal (45)
= l1m
n— 00 n+1

Using Stolz’s theorem, we get

Since

~ i I (3) + 0T ()

() (1) (3) o

im
o=l () + (4 Dl (5) — ol ()
= lim
n—od 1
. r(:s)
= lim(n+1)n
n+1
r (w52)
= lim (n+1)In —1+1
n+1

1

n

)
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Using equivalent infinitesimals, we get:

()
lim (n+ DI | "2 141
n—00 F( 1 )

n+1

1 1

F< +2)F( +1)
= lim (n+1) r n
n—oo 1
r
n+1)

Therefore

o [ (r(3) () - (e (3) ()

23.2 B Function

The B function (Beta function) is another special and very important function, which can be expressed using
the I' function.

Theorem 4

o)) = / N1 - )" dr (pg > 0)

Theorem 5
B(p,q) = B(g,p)

_TI'(r)
B0 =561
corollary 2
Blo,1—2) = [(z)l(1 —x) ™
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corollary 3

/g sin® 12 cos® ! rdr — EB (a b) _ lw
2
0

27\22 r(5?)
Proof: Let t = sinx then x = arcsint and dz = \/%. Therefore,
s 1 a
10 (3
/2 sin® 1z - cos® ! adr = / o1 - t2)%*1dt =— (3
0 0 2 T
[e.g.23.2.1] Calculate:
lim nt
n—oo @,
where a,, = fol z(1 — 23)"dx
Solution: (Method 1): Make the substitution ¢ = 3 and dx = %t_%dt.
Therefore:
1
/ (1 —z3)"dx
0
1t
== t7s(1—t)"dt
5 -
L(3)M(n+1
g (200) 2 EG) D)
3 3 T (n + 3)
1 T (%) n!
S DD )
B 3"n!
 Bn+2)3n—1)---2
Thus,
lim 27t
n—oo (@,
i 3t (n +1)! Bn+2)3n—1)---2
= 1 .
n—oo (3n+5)(3n+2) -2 3nnl
3n+3

m
n—oo 3N + H

=[1]
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(Method 2): Repeatedly apply integration by parts:

Thus,

[e.g.23.2.2] Calculate:

Solution:

lim

n—00 Oy

= lim

n—oo (3n+5)(3n+2)---2

1
ap, = / z(1 — 23)"dx
0

1 1
- 5/0 (1 — 2% d(a?)
1
= 3771 (1 — 23" dx
0

O

3(n—1) 3

s [ a-arae?)
3(n—1)

1
/ ' (1 —2®)"2dx
5 0

3(n

1
3n+1d
5 3n—1/0x v

—1) 3 1

5  3n—13n+2
3"n!

(3n+2)

Ap41

37+ (n 4 1)!

(Bn—1)---2

(Bn+2)3Bn—1)---2

3n+3

im
n—oo 3n + 5

lim
T—r+o0

lim
xr——+00

<ln"xn
<1" /m ! d(l”t)>
n"z— ————d(ln

o V1+t?

(ln” T —

3nn!

T Tl >
—dt
o V14+1t2
x 1 n—1
ntdt)
o V1+1t2

zIn" z

n - 3dt>
Vi4+az?2  Jo (1+1t?)2
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. (V1422 —2)In"z . T In™t
= lim + lim ——dt
T—+00 14 22 =00 Jo (1 —|—t2)5

lim In" N /+°° In" ¢ o
= 1 S —
etoo (V1+ 22 +a)V1+a2  Jo  (1+12)3

oo ¢
:/ Wt
o (1+1¢2)2

Considering the Beta function:

1
B(p,q) = / P71 — )9 N da
0

Let x = 1j_%(t > 0), then dz = O-E%Pdt' Thus,

S 1 too 2 \P! 1 =l gy FON ¢!
B _ P=1(1 _ )0 — A dt =2 ———dt
(p,q) /O 21— 2)* dz /0 <1+t2> <1+t2> (1+¢2)? /0 (1+22)pta

Letp—i—q:%,then
20
S —p|=2 —_dt
Pa? o (1+¢2)3

Taking the n-th derivative of both sides with respect to p, we have

+00 42p—1 1,1
B, =B™ (p, g - p) =<2 / Tt
0

(1+12)2
Therefore,
+o00 n +o0 2p—1 (n) 3 _
In"™¢ P By B )
/ _ Mgt = lim —dt = lim = (p’j »)
o (+)i pmido (147 pep 20 2

23.3 The ¢y Function

The ¢ function (DiGamma function) is the derivative of InI'(z), which is also a very important function
closely related to the harmonic series.

Definition 2

Y(z) = (InT(z))" =

According to the infinite product definition of the I' function, I'(z) = %e_’yz [T~ exp ((1 + 5)_1 ef),
then

InT(z) = —'yx—lnx—l—ki_o:l (% —1In (1—|— %)) = —’yx—lnx—l—é (% —In(k + x) —|—1nx)

Taking the derivative of both sides, we get

o0

R M ()
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Thus:

corollary 4

Substituting = 1, we have ¢ (1) = LA I'1l) = —v

corollary 5

Proof:

tk+1 tk‘-‘,—x
__7+Z(k+1 k+x)
:—7+Z/ — ety gt
:—wrZ/ (1 — " Yat
k=0

:_,Y+/ Ztk tml
0 5

1_tw71
S U
7JF/O 1t

corollary 6

n—1
1
Y+ - p@) = Y ——
k=0
[e.g.23.3.1] Given %(3) = —y — # —32mIn3and Y(3) = —y+ 7 — 21n3, calculate:
i 1
P (3k +1)(3k + 2)(3k + 3)
Solution:
i": 1 B SN SN
—BEk+1)BE+2)Bk+3)  6(k+3) 3(k+3) 6(k+1)
And
n—1 1
etk = vl +n)—y()
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Therefore

[e.g.23.3.2] Calculate:

Solution: Let y = z*, then

1
(3k +1)(3k + 2)(3k + 3)

hE

=
Il

0

1 1 1
235 <6<k+ 0 T 3(k+2) okt 1))

. P(n) —9(3)  Pn)—¢(3) | ¥v(n) —y(1)
L e
o)+ 20(2) - B()

6

T 3

Lettzl—m,qzt—%,then

Therefore:

/

1
1422 2-2t+2
1
1-(t-%)
1
1—¢

N = NI N = N =

xn

T2

(1+g+¢+-)

(1 (1-9-952) (4-n- 052 ..

;/Olm" <1+<(1—x)— (1;$)2>+<(1—x)— (1_;)2)2+-~->dx
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Considering the Beta function

1 Im)
nlm!
2"(1l—-z2)"=Bn+1m+1) = ———
/0 (1-=) ( ) (m+n+1)!
Therefore
/1x"d S (S ! +
o 11227 T2 \n+1 T+ D +2)
Therefore

i (-0 () )
=,}LH;O”<;‘(”‘” (i (nJlrl i <n+1>1<n+2> +))>

1 2n . n(n-—1)
_2nh—>ngo(n—|—1 (n—|—2)(n—|—1)+ >

23.4 The ¢ Function

Definition 3

corollary 7

[e.g.23.4.1] Let s > 0, find (1), ¢(2):

[T In(1 + s2?)
wls) = / it @

where

Let t = 22, dt = 2zdz then . , .
* In(1 1 * In(1
[ e
For s =1 1[0 (14 4)
wll) = 7/0 E
Consider

1 +oo tsfl
= dt
)= /0 -1
Let t = In(1 4 z) then

1 mm(l4x), [T (1+t) 1 71'2
C(Q) = /0 Tdib /0 i —=dt = gp = g nf ja

94



Pengbo Lu—Some Methods to Calculate Limits

Thus
p(1) = g
For s = 2
:/0+OC mdt (2t — 1)
- ()
And

1 (1T In(1+1¢) (1 + 1) 2
1 = = _— = _— — —
w(l) 2/0 PIEER /0 D

Therefore, only f0+oo %dt needs to be calculated, and

T+t)(t+2
+o0 1
/ n(l+1t) dt
0 (1+ t) (t+ 2)

“+ o0 “+ o0
:/ ln(l-i-t)dt_/ ln(1+t)dt
0 0

(1+1) (t+2)
:/+°° ln(1+t)dt_/+°° In(t) it
1+t L t+1
_ ; ln(l( ++t); oo 1n((1j:i)) ”
‘A 1+1) *[ t+1)
And
/+°° 1n(1+’15)dt—/1 ln(l—&—x)dm (x_l)_/l 1n(1+t)dt
1 t+1)  Jy z(x+1) ot Jy tt+1)
Then

Yn(1 +¢) oo In(14 1)
/0 =) d”/1 ir1) &
_ [Tha(+1) "n(l+1)
_/O (1+1¢) dt+/0 t(t+1)dt
T+ D) In(1+1)

_/0 tt+1) di

1 2
In(1
ot 12
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Thus

24 Fourier Series

A periodic function that satisfies certain conditions can be expanded into a Fourier series, which is very useful
in finding the convergence values of infinite series.

Theorem 1  (Dirichlet’s Conditions) Let f(x) be periodic with period 2/ and satisfy the following
conditions in [, ]:

(1) It is continuous or has only a finite number of discontinuities of the first kind;

(2) It has only a finite number of extreme points.

Then f(z) can be expanded into a Fourier series

$16) = + 3 (ancon (47)  busin (7))
n=1

where

ap = ;/ll f(z) cos (#) dx

by, = }/_llf(m)sin (TLZﬂ) dz

TRCES I (o L)

n=1
Then when z is a point of continuity of f(z), S(z) = f(z); when z is a point of discontinuity of f(z),

denoted as

fl+0)+ f(z—-0)

S(z) = 5

corollary 1  Let f(z) be periodic with period 2!/ and satisfy Dirichlet’s conditions, then:
(1) When f(z) is an even function,

2 (! nwx
an = 7/0 f(z)cos (T) dz,b, =0

ERCISIRNCS

(2) When f(z) is an odd function,

an =0,b, = ?/Olf(x)sin (@) dx
flx) ~ gbn sin (Tllﬂ)

For simple power functions f(x) = a® (where a = 2k,k € N), by expanding them into Fourier series
through recursion, we can obtain the convergence values of infinite series Z,Zo:l (;Lla) - and fozl n%
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[e.g.24.1] Find the convergence values of Z:o:l ——and > "

Solution: Expand f(z) = 22 into a Fourier series on [, 7], then:

L Cyr 2,
n = — dr =4 ) =7, by =
a - [ﬂx cos(nx)dx 3 00 = 3T 0
Therefore
2 & )"
=73 Z cos(nx)
Let £ = 0, then
71' o0
5 Z
Thus
n? | 12
n=1
Let x = m, then
212 o= 1
3 D 4 =0
n=1
Thus
S0
2
—n 6
. o (=pn!
[e.g.24.2] Find En:l on_1_
Solution: Expand f(z) = z into a Fourier series on [—, 7], then:
1 ™ -1 n—1
an, =0,b, = 7/ x sin(nax)dx = QL
7 ) n
Therefore
e n—1
-1)
Z ~———sin(nx)
n=1
Let x = 7, then
o0 o
-1 n—1 1 2n—1 -1 2n—2
% = HZ::I 2% sin(nx) = ; (2(2)n sin(nm) + 2% sin (’I’LTF - =
Thus

0 nl 77'
ngl n—l _
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25 Bernoulli Numbers

Definition 1  (Recursive Definition) Let

1, ifm=0
Om,0 = .
' 0, fm=#0

Then

Brmbmo— 3" (™) =B _
m = fm,0 E)m—k+1

k=0

Definition 2  (Generating Function) For the sequence {a,}, denote
Gz)=ay+az+ - +apa" +---

as the generating function of the sequence {a, }.

Definition 3  The Bernoulli numbers are defined by the generating function where

xXr > i
1= 2By
n=0

T
er—17

Thus, by performing the Taylor expansion of we can obtain B,:

ez er—17
B = lim ("
z—0 dx™ \e® — 1

Definition 4  (Bernoulli Polynomials) The polynomials of the following form are called Bernoulli

polynomials:
Mk
Bi(n) = Bk

=0

(Power Sum Formula) With Bernoulli polynomials, we can compute

Bk+1np7k

" B ptl —1)---(p—k+1
Z _Bp(n) =By _m " np+zp ) (p—k+1)
— p+1 S op+1 2 (k+1)!

[e.g.25.1] Calculate:

1k 4 2k +nk
nlgr;@ ] (ke N)
Solution:
i 1% 4 2k +nF
n—00 nk‘H
k+1
= lim k+1 + n +o(n k)
n—00 'n,k"‘1
_ 1
Clk+1
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[e.g.25.2] Calculate:

lim
n— oo

1" 428 4. 4k n
( nk _k—i-l) (keN)

Solution:

. <1k+2k+~~-+nk n >
lim - —

n—oo

k1
o (B
_n—>oo ’n,k’ k+1

26 FEuler-Maclaurin Summation Formula

The Euler-Maclaurin summation formula, abbreviated as the EM formula, connects summation and integra-
tion.

Theorem 1

/fd:v+ /w
/fdx+ /w

where ¢(z) =z — |z] — 3.

Theorem 2  (General Form of the EM Formula) Let the function f(z) have continuous derivatives
up to the 2n — 1st order on the interval [a,b]. The Euler-Maclaurin formula is given by:

b
/ flayar + LD +z oo [ 10 D@)da sen(v— o)

where B,, are the Bernoulli numbers and sgn(b — a) denotes the sign of b — a (note: the original
expression [f(2"_1)(b) — f(zn_l)(a)] dx is adjusted here for clarity and correctness, assuming the
intended meaning is the integral difference multiplied by the sign, though typically this term is
presented differently in standard Euler-Maclaurin expansions).
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[e.g.26.1] Prove:

Proof:
1 n
- E cos Vk
n
k=1

51 1 M 1 /M
=W+/ cos\/Eda:+—/ (z) f(z)d
n n Jy n Ji
cosl 4+ cosy/n  2cos+/n+2y/nsiny/n —2sinl — 2cos 1 1 M
1

n n

The limits of the first two terms are both 0, so only the limit of the last term needs to be considered.
fi(z) = Smf,w( ) = — |z] — 5 Therefore,

L[ vorew] < | [T ) < ]

/1dz‘\/ﬁ1—+0 (n — o)
1 2z n

n

Thus,

27 The Boundary Addition Problem

The essence of the boundary addition problem in sequence limits is to find the coefficients of each term in the
asymptotic expansion of the sequence a,,. In layman’s terms, if lim,, .., a,, = a, then a, can be expressed as:

A Ao Ay 1
an:a+‘+7+"'+7k+0 =
n n n n

Therefore, we may encounter problems like finding lim,,_, o n(a, — a), lim,, o, n [n(a, —a) — A;], or even

lim n{--nnnna, —a) — A1] — As]--- — Ag]}

n—oo

There are many solutions to this problem, such as using high-order EM formulas or Taylor formulas for
algebraic simplification calculations, or using Stolz’s theorem or other methods.
Before that, we first prove a conclusion mentioned in Definition of Definite Integral.

[e.g.27.1] If f(x) has continuous p + 1 derivatives on [a,b], prove that:

”_1 a)ftl & b C1)PHL(p — g)P

=0

where ©; = a + z%‘l fori=1,2,...,n
Proof: Insert n — 1 points into the interval [a, b]:

T, =a+1

Let I; denote each subinterval:
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Expand f(x) at x; using Taylor’s formula with the Lagrange remainder term up to the pth order. Then there
exists

fie(a (z—l)bn +zb_a) (i=1,2,...,n)
such that: ) o)
f _ fp+1 (’gl) _ .\p+1
kZ:O (x —x)k + 7(1)—&—1)! (z — ;)

Since f(z) has continuous p + 1 derivatives on [a,b], then IM = max | P+ ([a, ])|.
Notice that:

= (b— a)k+ it ol )y
St e S| <3 [T S
k=0
Consider
p_1 k+1 n n a-‘rz—
p _ k.& (k) f(p)(xi) 2 \P
HE< V" G e 2 ““1 [ e ‘”} S G e

n LA (Y
> [/Jr( l)b Zf k(lxz)(xxi)kf(ﬂﬁ)dx]
i=1 =7 k=0 ’

p

fFe&)

NP+l
+i-nt=e (p+ 1! (o~ de

And since |f®+D (&) < M, then

/ Fer(g)
ask (i~ 1)b=e (p'i‘l)!

(z — x;)P dx

(x — 2;)P T dx

p + 1 a+(i— l)b
M n
m oL S
L=l at(i—1)2=2
_ M- )”+2
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Therefore,

p—1 (b b
nli_{r;Onp{[Z(_l)k sz(k) 1—/@ f(w)dm}

k=0

a+(i—1)252

1 n
- — lim —— P) (. _ )Pl
nlggo (p—|— 1)' ;npf P (1'7,)($ xz)p a+(i71)b_a

— lim (_1)p+1(b_a)p+1if (a+z a) "

(Do —a)p ("
- (p+(1)! /af()(x)dx

—1)P+H(p— )P
:( 1)(p++(1:')l)' ) [f(p_l)(b)—f(p_l)(a)}

Q.E.D. Although the discussion is about adding borders to sequences, the same concept can also be
applied to function limits.

[e.g. 27.2] Compute:

1 1\ 7*
lgn x((ew;—ln) —\/@) (a,b>0)

Solution: We already know from Equivalent Infinitesimals [e.g. 6.2] that

T—00 2

lim <a+b> —Vab (a,b>0)

Therefore,

= lim
t—0 t
e%l (at;rbt)—llnab 1
= Vvablim
t—0 t

Using equivalent infinitesimals, we have

to gt
%ln(%)—% In ab

-1
Vb lim €
t—0 t
1 a’+bt 1
1) ( + )—flnab
1 2 2
= vablim t
1n<“u2rbt) — tlnab
= vablim 2
1 (% aj—l—b:)
=Vablim a2:b2
t—0 t2
In(d (aé_bQ)Q +1
— Vabli S
= Ve 12
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Using equivalent infinitesimals again, we obtain:

In (; NG 1)
= Vablim a2 b2

t—0 t2

2
T e
= +vablim ——a2:b2
t—0 t2

= <hm (b% — 1)>2
2 t—0
g <lnb lna)
5 (5)

Since the problem of adding borders is relatively simple, we can even create our own problems.

[e.g. 27.3] Compute:

w\f—‘

Tblgr;on<; —Inn — )

Solution: We know that °;_; ¢+ =Inn -+ + o(1). Therefore,

"1
limn< —lnn—7>
n—00 k

k=1

Since In (1 + %) =

We can continue to add borders and compute further.
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[e.g.27.4] Calculation:

k=1
Solution:
lim n<n zn:l—lnn— — =
v k 773
k=1
[k g -y — 5]
=l
n+1
i { k:1%_ln(”+1)_7 2(n+1i| [Zk 1k —Inn—v— ]"’ﬁ_z(nlﬂ)
= lim
n—oo (n+1)2_n2
1(1
1(2+ In(1+2)
_ 2 22(71 n+1)
== lim n*(n+1) o+ 1
nd 1 /1 1 1
=—lim —|=[—-+—— | -In(1+—
ngr;oQ {2<n+n+1) n< +n)]
Since
. n) n 2 n2 3 nd n3
then
n3 1 /1 1
— lim — |= | — —In(14+—
i[5 (o)~ ()]
(X 1 1,11 1.1,
_nl—>ngc22nn+1 n 2 n? 3n30n3
n 1

3
1
8
| =2

= B

Meanwhile, we also obtain a higher-precision estimation:

- 1 1 1
Z :1nn—|—’y+—+o(2>
P n

2n  12n?
In fact, according to the Euler-Maclaurin formula:

H
x| =

- / " ot + L0 +Z = [f@"—l’(b)—f@"—”(a)}

104



Pengbo Lu—Some Methods to Calculate Limits

Let a=1,b=mn, f(z) = %, then:

o0

n 1 % B2n e e 1 sz
> s L 3 g [ = ] e -3 P
k=1 k=1

For the detailed proof, see: https://zhuanlan.zhihu.com/p/148221397
Therefore, readers can prove by themselves:

+ L

12

"1 1
li § c—ln—-~|—-=
nl_I)n n{n |"/l <k_1/€ nn ’Y) 2

[e.g.27.5] Calculation:

lim nsin (2wen!)
n— oo

Solution: Consider

k=1 k=1 j=n+1 J:
Then

lim nsin (2men!)
n— o0
= 1li 3 2 - 1 S ! |
fngrrgon51n s ZE—I—Z F n!

L k=1 j=n+1

i i 7 1 | |
:nlgrrgon51n 27 Z o nl+2r (1+n+..+n!)
Jj=n+1

[ 1 1
o . |
= nl;n;Qnsm -27r ((n—I— 01 +o0 <(n+ 1)!>> n}

[e.g.27.6] Calculation:

lim n? [nsin (2wen!) — 27]
n— oo

Solution: Consider
o

G=n+

?T“;—A
%‘H
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Then
1i_{n n? [nsin (2men!) — 27
lim n? |nsin | 27 ilJr i 1 nl| —2m
n—o0 ! ) 4! ’
L k=1 j=n+1
i 2 i —|n! Nl —
nl;rréon nsin | 27 ( z nl+2r(l+n+...+n!) 27
L Jj=n+1
I o[ ,(2ﬂ'+ 27 N o +<1)> 2]
= lim n° [nsin ol —=])—2n
n—oo | n+l (m+1)n+2) nW+1)n+2)(n+3) n3
Since 1
sine =z — 63:3 + o(z?)
therefore
. ( 2 n 27 n 2 n (1))
sin ol —
n+l (n+1)n+2) m+1)n+2)(n+3) ns3
27 27 27 1 8 1
= + + — et =
n+l (+1)n+2) m+1)n+2)(n+3) 6 (n+1) n
Thus
lim n? [nsm( 21 + 21 ¥ 2m +0(1>) 2 }
— 27
n—o0 n+l (n+1Dn+2) w+1n+2)(n+3) ns3
T 2mn n 2mn . 2mn n 83 Yo 1 9
_ _n, i
n—oo n+l (n+Dn+2) H+DnN+2)(n+3) 6 (n+1)3 n?
4 n n
=21 — —m° + 27 lim n® —1
TogT o bem [n+1+(n+1)(n+2) }
4 2n?
— 2 — o _op lim
3 n—o0 (n + 1)(n + 2)
4
=27 — =73
T gm

28 Iterated Limits

An iterated limit is a type of limit for multivariate functions where the limit is taken sequentially with respect
to each variable. The general approach to solving it is to fix one variable, find the inner limit first, and then
the outer limit. Functions of three or more variables are similar to bivariate functions, so the following
examples focus on bivariate functions.

Iterated limits generally cannot be exchanged in order, but they can be exchanged under certain specific
conditions. The following theorem provides a condition that guarantees the exchangeability of iterated limits.
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Theorem 1  Suppose f(z,y) is defined on some neighborhood U®(Py) of Py(zo,yo). If:

(1) For any y # yo in U°(Ry), limy—a, f(2,y) = 9(y);
(2) limy 4, f(z,y) converges uniformly in z over U%(Pp): lim, ., f(z,y) = h(x).

Then
lim lim f(z,y) = lim lim f(z,y).

T—xo Y—Yo Y—Yo T—To

[e.g.28.1] Calculate:

1
r+1 _ .r+1]7
lim lim [(x +1) * }

r—o00 r—0 x

Solution:

1
=

[(I + 1)r+1 _ .CCT+1]

lim lim
r—00 r—0 xX
1
1HEr|
= lim limM (x<f<x+41)
x—00 r—0 x

~ Jim & lim (r + 1)+

x—o0 I r—0

=[e]

[e.g.28.2] Calculate:

Vi t
/ dx / siny3dy
lim lim 5 o “”230

t—0t x—+o00 T 5
— -arctan — — 1| arctant?
T 12

Solution: First, observe the numerator and denominator. Notice that the double integral in the numerator
does not actually contain x; x is just an intermediate variable that will eventually cancel out. Therefore, when
taking the limit with respect to x, only the term in the denominator containing x needs to be considered.

. 2
_ 611mm_,+m mln(;-arctan t%) —1
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Next, calculate the limit of the exponent:

. 2 X
lim zln( — -arctan —
T

z—+00 t2
. In (% -arctanﬁ - 1—|—1)
im
s—0t S
lim = arctan # 1
im
s—0t S
1 =
z lim arctan o 3
T s—0*t S
1
2 . s22 4L
— -+ lim
T s—0t 1
_ 242
s

Now consider the double integral in the numerator. The integration region is =

2

Figure 2: Integration Region

changing the order of integration, we get

<

Vit t t VI t )
/ dm/ siny3dy = / dy/ siny®dz = / Vysin yidy
0 22 0 0 0

108

Y

<

£, 0

<

T

<

Vi.

By



Pengbo Lu—Some Methods to Calculate Limits

Therefore,

/ dx / siny3d
lim lim 2

t—0t+ z—+4o00
arctan — 1| arctant®
s 12

fo Vysiny3d

Y _z242 5
t=0 [e =t —1} arctantz

fo VY sin y3dy
e —242 43
T

Visint3

m
7
t—0+ —2 . Qti
T 2

[e.g.28.3 (Difficult)] Calculate:

oo (=1)"? [} 7( Y1Ft—1)sint*
Zn:l n Zm 0 n- 2m+1 fO Zoo ((n=1)H2(2¢)2" 1 (1—2z)In(l—x) dt
(2n)!

dz
0 2 —z+41

lim lim S ortan I\ T
20T Yoo z?(x — tanx)In (22 + 1) [(ch = 5) - 1}

i

Note: This problem looks very intimidating and complex. In fact, it can be solved by breaking it down step
2 2n
by step. The biggest difficulty of this problem is to calculate Y (=1 (20) 7

Solution: e

USRS
"z::l n z::on 2m—|—1
/ oo 00 (_1 n—1 1
_nglrnZ:O n n-2m41
LSS [y,
_n:1m:0 n 0

1 © 0 \p—1 .

m=0n=1

_ /1 (i (2" + 1)) do

0 m=0

Notice that

Therefore,
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And

/1 (1 —-22)In(1 fx)dx
0

22—z +1

S /01 In(1 — z)d (In(z® —  + 1))

1 2 _
:—ln(l—x)ln(x2—x+1)‘(1)+/0 ln(;vxfxl—i—l)dx
"In(t? —t+1
:/ el Gl ) P R
0 —t
"In(¢® + 1) — In(1
:/ n(t? +1) — In( +t)dt
0 7t
1 1
:,1/ Mds (s:x3)+/ Mdm
3 0 S 0 X
2 (11
:7/ n(l—&—x)dx
3 0 x

k=1
2 (1 =1
=3 ZI@_QZ(%V)
k=1 k=1
21 7
=33 %
71.2
18

Observing the numerator and denominator, only the denominator contains y, so we only need to take the
limit of the term containing y in the denominator.

) 2arctan £\
lim — ) —1
y——+o00 ™

) 2arctan £\ Y
= lim (———=2&} —1

y—+4o00 T

I ) 2 arctan %
imy oo yIn| ——= 1
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Next, we calculate the limit of the exponent:

2 arctan £
lim yln{ ——*
Yy—+00 ™

In 2 arctan %
T

s—0t S
1
In (Zarct:n = + 1)

s—0t S

. an L
2arctan —— _1

T s—0+

2
=——=x
T

) 2arctan £\ Y s
lim — %) —1])=e 7% -1
y——+o0 s

i n—l 2t)

The convergence domain of the series > | % is [-1,1]. Let S(z) =Y 7", W, then

Therefore,

Finally, consider the series

S (z) = i ((n — 1) (4n) (22)*"Y, ~1<a <1,

S (z) = i ((—”‘Tl)'ﬁ (8n) (2n —1) (22)>""2, “1 <z <1,

s — \ = ((n—1)! 2n . 2n,
-y (("(QT;?') 2n) (20)" + 3 % (8n) (2n — 1) Z 2n) (2n — 1) (2z)

n=1 n=1

=44y (UL R _nl?') (8n) (2n — 1) (22)*" 72 = (D) 2_73) ’ (4n?) (22)*"

n=1

—44 nz:: MS (n+1) (2n+1) (20)°" = > "Q_n?) (4n?) (22)*"

n=1

Therefore:
28 (2)+ (1-2%) 8" (x) =4, -1<a <1,

Dividing both sides by v1 — 22, we get

4
5 (@) + V1 - 228" (2) = ———,
\/1—x2 V1-—a?
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Thus,
V1—225" (z) = 4arcsinz + C,
From S’ (0) = 0, we get C' =0, so

4 arcsin x

S =

Integrating both sides, we get

S (z) = 2arcsin’®z + C1,
From S (0) = 0, we get C; = 0, then S () = 2arcsin®z (—1 < z < 1), thus

o} n—l 2t2”
Z ))()

= 2arcsin’t, —1 <t < 1.

n=1
Then
0o (71)"_1 oo 1 z? (\4/1+ 1) tt
Zn:l n Z’rﬂzo n-2m+1 JO oo ((n— 17)r') 2(2t)2n flSl(Il1 21:)1n(1 ) dg de
. . n=1 (2n)! 22 —x241
lim lim Sy
r—0t y——+00 LL’Q({L‘ _ tanx) In (£U2 + 1) {(%) ) 1}
fIQ w(Y1+t—1) sin t* dt
0 i 2y w2
— lim 2arcsin®t-Ig
w0t 22(—52%)2? (—22)
- 27 . 2 arclsj;lz( 21) sin2®
16 z—0+ x7
27 lim Vi+z2-1
T8 as0t x?
27 1
8 4
o7
32

29 Double Limit
Double limits and iterated limits are related but distinct. A double limit considers the limit as the independent

variables simultaneously tend to a certain point, while an iterated limit is the limit of a variable tending to
a value sequentially. There are some connections between them:

Theorem 1
Suppose the double limit limzzg f(z,y) = A. When y # b, if lim,_,, f(z,y) exists, then

lim lim f(z,y) = A

y—bzx—a
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29.1 Definition Method

Definition 1  Suppose the n-variable function f(x1,x2, -, ,) is defined in a punctured neighborhood
of a, and A is a constant. If for all € > 0, there exists ¢ > 0 such that for any 0 < |z — a| < §, we have

|f(z) <e

then the limit of the n-variable function f(z) is A, denoted as lim,_,, f(z) = A.

[e.g. 29.1.1] Calculate:

lim iz
(z,9)—(0,0) T + Y

Solution: For all € > 0, there exists ¢ > 0 such that for any 0 < /22 + y? < §, we have
[22 1 2
xy < VY < e +y <5
r4+y| | 2 | 2 -

. Ty
lim =0
(z,9)—(0,0) T + Yy

Therefore,

29.2 Polar Coordinates

Polar coordinates are also a good method to calculate double limits, but most of the time, polar coordinates
are more suitable for proving the non-existence of double limits, and may lead to errors when calculating
double limits. Although polar coordinate substitution is feasible for calculating double limits, because we
have a theorem:

Theorem 2 If the domain of the binary function is D, and Py(zo,yo) is a limit point of D.
Then the necessary and sufficient condition for the double limit lim g, ) (zq.40) f(7,y) = A is: Let
T = zo+rcosf,y = yo+rsinb, for all € > 0, there exists § > 0 such that forany 0 < r < §,0 < 0 < 27,
(r,0) € D, we have

|f(zo+rcos,yo+rsind) — Al <e

For the proof, see: https://zhuanlan.zhihu.com/p/503998713
However, some people ignore the arbitrariness of the path taken in double integrals when calculating
limits after polar coordinate substitution, leading to errors. Here is an example to illustrate this:

[e.g. 29.2.1] Calculate:

. 3+ 98
lim
(z,9)—(0,0) 2 +y

Solution: Substitute x = rcosf,y = rsinf
Therefore

3 + y3
im
(2,9)—(0,0) T2 +y
. 13(cos® 0 + sin® 0)
= lim :
r—=0 r2cos26 + rsind
72(cos® f + sin® 0)
m
r—0 7cos26 +sinf
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If sin @ = 0, then

2 3 .
lim r’(cos 9—|—51.n 9) = limrcosf =0
r—0 rcos20 +sinf r—0
If sin @ # 0, then
r2(cos® 0 +sin®0) i 72(cos® 0 + sin® 9)

= = 0
"0 reos? 6 +sin 6 B sin
Therefore,
lim 2+ =
(@y)—(00) 22 +y
But is this correct? If we take y = —22 + 23, then
x® + 18 P+ (—a? +2?)?
i ——— = lim =1
(@,y)—(0,0) T2 +y  2=0 3

This contradicts the previous calculation! Why?

Since Theorem 2 is correct, there must be an error in the calculation process.

In fact, during the previous calculation, we did not ensure the arbitrariness of 8. In other words, when 6
tends to 0, the limit lim,_,q W is indeterminate. We cannot directly conclude that the result is
0, so there is an error in the final step of calculating the limit. Only the limit of an infinitesimal multiplied
by a bounded quantity is 0.

[e.g. 29.2.2] Calculate:
ay sin (ky)
im ———
(z,y)—=(0,0) 2=+ Y
Solution: Let x = rcosf,y? = rsinf,y = +/rsind, 0 € (0,7)
Then
in (k
0 k)
(zy)=(0,0) 2+ Yy
+r2 sin 6 cos  sin kv/rsin 0

T_l)%l+ r2
= lim +siny/7(kVsin)sin @ cos b
r—0+t
29.3 Squeeze Theorem
[e.g.29.3.1] Calculate:
) sin (z2y + y*)
lim ————>~
(@)—(00) @ +y?
Solution:
sin (2%y + y*) 22y + oy x? yt 9
< —0 — (0,0
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[e.g.29.3.2] Calculate:

2

. xy
lim
(2,y)— (+00,400) \ 22 + Y2

Solution: Since

0<% o !
212 S22y 2
therefore - 2
0<<xy) <<1> — 0 as (z,y) = (400, +00)
—\2?+y? —\2 ’ ’
Hence I
. Yy
(e0) e +20) (z2 + y“') =Ll
[e.g.29.3.3] Calculate:
zysin (ky)
(@y)=(00) z*+y*
Solution: - ) .
0< xizlj_(yf)‘ < QJ;xyyz - |sinky| = 3 |sin ky| — 0 as (z,y) — (0,0)
Thus

rysin(ky) @
(z,)—(0,0) x2 + y4

29.4 Holistic Approach

The holistic approach involves treating certain elements as a whole, such as zy,z +y,z — v, %, etc. If they

satisfy certain properties (e.g., tending to 0), then the whole can be used with important limits, equivalent

infinitesimals, Taylor’s formula, etc., similar to single-variable limits.

29.4.1 Important Limits

[e.g.29.4.1.1] Calculate:

. sin z siny
lim ——
(z,y)—(0,0) Ty
Solution: ) )
) sin x sin y ) Ty
lim —== lim —==]|1
(w,y)—(0,0) xyY (w,y)—(0,0) xY

[e.g.29.4.1.2] Calculate:

sin(zy?) sin(x?y)

(zy)—(0,0)  x2y?sin(zy)

Solution: )

sin( 2L ) sin(£2)

li 3
(w,y)lgl(op) x2y? sin(zy)

[e.g.29.4.1.3] Calculate:

1
= lim 2o
6 (z,y)—(0,0) 22y?(zy

~—
D

lim (1 + 1 >
(z,y)—(+00,0) Tty

Solution:

Tty
)"-m

1 xT
lim (1 + ) = lim (1 +
(z,y)—(400,0) Tty (z,y)—(+00,0) T4y
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29.4.2 Equivalent Infinitesimals
[e.g.29.4.2.1] Calculate:

vzy+1-1
(,5)—(0,0) xy
Solution:
YA EI-1 . %L
(2,4)—(0,0) xy (z.9)—=(0,0) TY | 2

[e.g.29.4.2.2] Calculate:

lim In(1 + zy) - sin(x + y)
(z,4)—(0,0) 1 —cos(z +y)

Solution: _
In(1 + zy) - sin(z + y) . zy - (z+y) . xy
im = lim Ty = lim )

(z,y)—(0,0) 1 — cos(z +y) (z9)—(0,0) 5(z+y) (z.y)—=0,0) 5(x +y)

Since
0< xy‘ < Vzy — 0as (z,y) = (0,0)
Tty T ’ ’

therefore

1 - si
- n(l+ay)-sin(z+y) @
(zy)—(0,0) 1 —cos(z+y)

29.4.3 Taylor’s Formula
[e.g.29.4.3.1] Calculate:

fim (vy — sinay)(z + y)?
@)=00 L L In(1+ x + )7 sin’(zy)

Solution:

4 (vy — sinxy)(z +y)?
(@900 L4 i —In(1+=z+ y)%y sin® (zy)

) (vy — sinay)(z + y)?
= lim
(@y)=(0,0) (l +1 o Lin(l+ax+ y)) zhyt

— lim (zy —sinay)(z +y)°
(2.9)—0,0) (z +y —In(1 + 2 +y))2z3y3

(z+y)* (S + o(ay?))

= lim 2
(2.9)=(0.0) (% +o((z + y)Q)) %y’

SIS

—_

116



Pengbo Lu—Some Methods to Calculate Limits

30 Some Famous Conclusions

30.1 Famous Constants

30.1.1 =

Conclusion 1 (Leibniz Series)

Proof: Consider

1
k=0
Therefore,
> 1
Y (—a?)r = 7 (2l <1)
P 1+z
Integrating both sides from 0 to 1, we get
1 o© o] 1 [e%s) k
i (=1
| atar=Y [ atfar=y
0 k=0 k=0"0 i 2k 1
And )
1 g
d =
/O 1+227 T
Therefore,

Conclusion 2 (Basel Problem)

Proof: Consider the infinite product expansion of sinx

sinx =z
11 (1~ )
k=1
And the Taylor expansion of sin x
3
x
S —r— = 4...
sing =z — —

Then

Comparing the coefficients of the square terms, we immediately get
T12.2° T g
— k2w 6
Therefore,

=1
>m=%
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Conclusion 3  (Gaussian Integral)

Proof: Since

Therefore, it suffices to prove

Method 1 (Double Integral):

Therefore, I = g ie.

Method 2 (I'" Function): Consider

Let s = £, then

1
2

Consider the Euler’s Reflection Formula

Let z = =, then

1
2

Therefore, I = @ ie.
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Conclusion 4  (Dirichlet Integral)

T gingx T
dr =
0 a 2

We have already proven this in Riemann’s Lemma [e.g. 22.4], so we will not elaborate further.

corollary 1  In fact, for any p > 0, we have

/+°° sin px 0
dr =
0 4 2

We only need to substitute z = ;,dx = %dt.

[e.g. 30.1.1.1] Compute:

Solution:
+00 (i42
sin
/ 1 2:17d
0 €
+oo 1
:/ sin? xd (—w>
0 X
_ sin2z |7 /+°° sin 2z
o X 0 0 xr
|
12
30.1.2 ¢

Two definitions:

Definition 1  (Limit Definition)

Definition 2  (Series Definition)

=1
€:ZE
k=0

Theorem 1 (Euler’s Formula)
0

e = isinf + cosf
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30.1.3 ¢

Definition 3 (Fibonacci Sequence) Fy = Fo =1,F, = F,,_1 + F,,_5 for n >3
e L (123" (1=vBY"
"5 2 2

2 n— 00

corollary 2

n—1

30.1.4 ~

Definition 4  (Limit Definition)
= li Sl 1
7=l | ) g~ tan
Definition 5  (Improper Integral Definition)
11
v = / (— = —) dz
1 lz] =

Proof:

= lim (/ 1dx—lnn>
n—oo \ J; |z]
n—1 k+1
:nh_>ngo Z/k —dx —Inn
k=1
n—1 1 1
(50w
k=1
n 1
(5w
k=1
=7

corollary 3
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30.1.5 G
Catalan’s Constant, denoted by G, is defined as:

Definition 6  (Series Definition)

v yr
G_Z (2n +1)2

n=0

Definition 7  (Integral Definition)

1 L arct
G= —/ In(tan z)dx = / AT e
0 0

T

[e.g.30.1.5.1] Discuss the convergence of I(a) and calculate I(1) when k = 2:

Where .
* In(1
I(a):/ MdmforaZO
0 1+z

s T In(1+az)
Solution: First, T =0

1. When k < 1, there exists X = max{1, e;l} such that for z > X,

—+oo +oo

X 1+ zk X +z

Therefore, the improper integral diverges.
2. When k > 1, then there exists ¢ > 0 such that & > 1 4+ e. And there exists M > 0 such that

In(1 4 az) < Mz*. Consider the interval [1,4+00), then

+o0 1
/ n(1+ ax) A
. 14 zk
+o0o Mzxe

dx
ok

<
1

m57k+1 too

e—k+1
B M
T e—k+1

1

Next, consider the interval [0, 1]. Since k > 1, thus 1 + 2* > 1 and In(1 + ax) < M’. Therefore,

1
1
/ n(l+ a‘x)dx
0 1 +xk

1 /
M
< [ Ada
O ].

Thus, I(a) converges uniformly on [0, +00) with respect to a. Therefore,

“+oo T
I{a) :/0 AT 1a0)™
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When k& = 2, we have

+o0 T
”“>:/0 A0 Tan ™
1 T (ar+1) -1

Lo

a 1+ 22)(1 + ax) v

1> 1 1 [T (1+2?) —a?

,/ 7@,_,/ Atz —a®

aty, 1422 aly (A+22)(ax+1)

™ 1/t 1 dx—i—i N — de
2a aJy ar+1 a? Jo (1+22)(ax+1)

_ T 1[0 1 1 [ I x
= lim |——- dr+ = | ——de— = | —————dx
t—too |2 a Jy ar+1 a? Jo 1422 a? Jo (1+22)(ax+1)

R - [ln(l—i-at) ln(l—i-tz)} 1

Therefore,

Since I(0) = 0, then

“ 1 Inz T ¢ Inx
(a) /0 (2 z2+1+:c2+1) T =3 arcana—i—/o oL

Thus,
2 g
I(1) = — d
W=+ [ e
1 2
t
= arctanx - lna:|(l) - / AT e+ T
0 T 8
2
T
=— -G
8
30.1.6 A
Glaisher-Kinkelin Constant
Definition 8 o2
1192 ... pn
A= lim i

n2 n 1
n—=o0 p o totiz e 1
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[e.g.30.1.6.1] Solve the limit:

Solution: Let z, = lim VE)E)- ()

n— 00 e

. 1
((nJrl)lnn!ZZlnk!) 7g+%

k=1

SRS

Since
n

> nkl=> (n+1-k)nk=(n+1)hn!—> kink
k=1

k=1 k=1
Simplifying, we get

2 & n+1 no 1
lnxn:EZklnk—Tlnn!—§+§lnn

k=1
Since Lo
_ _ 1192...pn
A= lim A, = ez
2 1 1
Inz, =—-InA, + n+§+— lnnfnfnJr Inn!
n 2 6n n
2 1 1 1 1
Inz,=-InA, ——Inn+1- ny Inv2m — <1+ ) O () =1—InVvV27m
n 3n n n n
Therefore
hm n (%)Eg).;.(%) _ e
n—r00 ezxzn" 2 V2T

More mathematical constants can be found at: http://www.ebyte.it/library/educards/constants/
MathConstants.html

30.2 Famous Inequalities

30.2.1 Cauchy-Schwarz Inequality

Theorem 2  If f(z), g(x) are integrable on [a, b], then:

bf(w)g(w)dw 2§ bfg(w)dw- b92(x)dfc
J J J

Proof: Consider

b b b b
[ 5@ = kg do = [ arde 2k [ f@)g@)dn+ [ Pade=0
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Therefore

A=4 (/ab f(:z:)g(x)dx)2 - 4/; fQ(w)dx/ung(x)dx <0
b 2 b b
( / f(sc)g(z)dx> < ( / f2<x>dz> - < / g2<x>d:c>

30.2.2 Young’s Inequality

Thus

Theorem 3  Let f(x) be continuous and strictly increasing on [0, +00) with f(0) = 0,a > 0,b =

f(a) > 0, then
a b
b< d -1
a_Af@x+Af

where f~1(y) is the inverse function of f(z). Equality holds if and only if b = f(a).

30.2.3 Holder’s Inequality

Theorem 4  If f(z), g(x) are continuous on [a,b] and % + % =1 (p,q > 0), then

/ F@g@de < ( / b If(:v)l”dx> % < / b |g<x>|%zw>é

30.2.4 Minkowski Inequality

Theorem 5 Let f(z),g(x) € R[a,b],1 < p < +00, then

Vab(lf(x)Hg( de] (/ e |pdx>;+</ab|g<x>pdx>;

30.2.5 Hadamard Inequality

Theorem 6  Let f(z) be a concave function on (a,b). For any 1,22 € (a,b),z1 < x2, we have

1 + x2 1 2 f(x1) + f(x2)
f( )fzz/ fOydt < ———=——

2

30.2.6 Favard Inequality

Theorem 7  Let f(z) be a non-negative concave function on [a,b]. For any p > 1, we have
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50 Problems on Limits (Old Version)

Original Author: Zhihu @ ff4Z:https://zhuanlan.zhihu.com /p /464349656
Note: Actually there are 51 problems.

p times p times

~
. tantan---tanx —sinsin---sinx

. lim i , where p € N*
z—0 tanz —sinx

. 141 _1
. lim [(a + )T — x1+w+a}
x—>—+00

1 1
lim [<x3+§—$3tan> e —\/1—1—356]

’ T—+00 €T

. lim ({*/x4+x3+x2+:c+1—\3/a:3+a;2+a:+1-

Tr—00

In(z + e””))

T

. 1 $2+$—1 s
. hm xr-ez-arctan ———— — — - ¥
T—+00 ((L‘ + 1)(33 + 2) 4

) - k\ . km
. an;o;<l+n> smﬁ

14z 4/14+2x | 2n/ldnz _ 1
. 1-x 1-2x 1-nz
. lim

20 3 arctanx — (22 + 1) arctan® x
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31 1 — cos zv/cos 2xv/cos 3z - - - Y/cosnx
. lim 5

x—0 T

z—0+ InZ%
a

1
9. lim [ln(xlna)-ln(nax)],a>l

10. lim nsin(27nle)
n—oo

11. lim n® [nsin(2er - n!) — 27]
n—oo

12. Let the sequence {a,} satisfy a; = 1, and a,4; =

an

the limit lim nla,.
n—oo

13. lim "%/(n+ 1)l — V/n!

n—oo

:n2+1+n2+22+'“+m' Findnliﬂrgon
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16.

17.

18.

19.

20.

21.

22.

23.

Let S, = 21“072 Find lim S,.
n n—o0
- k
li —
i 11 (1)
k=1
. 1an+2an+'__+nan
lim
n—00 nan
1 1 1
. n+nz+nzs+4---4nn
lim
n—o0 n
. <1+2p+31’+---
lim
n—00 np

1+,
<< 1,xn:,/%,n:1,2,3,

+1-k
nC’k

n
lim E
n—oo

lim
n—oo

—(x1 + 20+ -

L Ll
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p

. Find lim ka.
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1—1

24. lim Vi [] =
k=1

25. f(x) is differentiable at xy, a < oy < b, and lim a, = lim b, = xy. Prove that

n—oo n—oo

i £ ) = fan)

n—00 b, — a,

= f'(o)

" k? n
26. i - —
nggo <Z n?+k 3)

. on+ni4nd+ 40t
27. lim

28. lim [ —2 T g

n—oo [y sin" x + cos® x

s

2
29. lim sin” xdzx
n—o0 0

u 1
30. lim e
n—00 ; n?+n—k?
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31.

32.

33.

34.

35.

36.

37.

38.

2

n
l. n

m Y
n%ook 1n2+k2

n

. 21 —1
lim E sin ——a
n—oo n

i=1

k=1

k+VE2 14 >
Lot o = VL i T <1 \
—00
1 n n i
;o + X
n—oo [q e x‘l’ﬁ
1
lim nn

n—oo In (12020 4 22020 4 ... 4 pp2020)

1
1
n—)oo;n+k&
1
. . 1n2 . ln?) . h’ln n
lim [ sin —— +sin — + --- + sin
n—00 2 3 n

129
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i Y

i=1 j=1

IS 2
. lim — Z { n} where {a} denotes the fractional part of a.

k=1

Z sin?(nx
hm f02 SiIEJ: )dx
n—00 Inn
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47, lim > (~1)FCEVa? +k
T—00
k=0

1 n
48. lim = n
n—oo N, +‘+...+L

n+1

N[
wWin

19, G [ EE00)
n—oo [ 1+ nbx2

dx

(1)
0 J:%(ZC,J

51. lim
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50 Limit Problems (New)

Original Author on Zhihu @ [f1Z :https://zhuanlan.zhihu.com/p /586648267

Note: There are actually 53 problems.

II. Warm-up Problems

1. ap = v1+2015,a2 = \/1 +2015v1 + 2016

n—oo

ey, = (1+2015\/1+2016\/1+---+(2014+n) 1+(2013+n)>, lim a,

—x ——n

n—oo N Inn s

3. lim Inn (ZZ:; csc(E0) 2 )

4. lim a, E a: =1, lim /na,

n b'fl
5 If ay,b, >0 foralln > 1, and lim Intl _ € R™, lim o _pe R™, compute

n—00 NaQ,, n—oo Moy,
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1

: Z;ﬂnzlalé - "
6. Jim (m Ll

k=1

7. f(z):[0,1] — R is an integrable function and continuous at = 1. For k& > 1, find

[ A
lim / (z+2F2° + -+ nFa) f(2) d
0

n—oo Nk

8. {bn}y2, is a sequence of positive real numbers with by = 1 and b, = 2+ \/b,—1 —

21/ 1+ 1/b,_1. Compute Z b, 2"

n=1

10, [ € B0.1), find lm L3 (-1)Ff <k>

n
k=1

o () de
1. f(x) € C[0,1], f(z) >0, find Tim I () da
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12. lim Z( D

m—00 =1 j=1

6n &n
: [ 2 : 2
13. Jggo{tan <7r n +{11J>+4sm <7r 4n +{11J>}

[II. The Real Challenge Begins

00 00 00 €7x71+12n71‘n+22n7” T2n2n X €m12n7m22n7”.7$n2n
1. Let I, = dridzs - - - dxy,
. )
0 0 0 1-1271 + x22n 4+ 4 ann _ $n+12n _ xn+22n ... :L.2n2n
lim I,
n—00

n+1 1 n 1
2 i {3 T () = (T (5)

3=

—x
(& " P

n—00 <z< E
Swteo k=0 &I

3. lim < max

)

b
d
4. a,b € R, c € R, find lim o i.EQ
n=oo [, ¢+ [[i_gsin(z + k)
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z n
5. lim dx
n—oo Jo  (v/2cosz)" + (V/2sinz)"

n—o0

7. f:]0,1] — Risa continuous function. Find lim / / ( — ) dzy - - - dx,

1
8. a, =+/n+ a,_1,a; = 1. Prove that a, = f—l— +— ( >
T S\F NG

0. 1 " arctan% J T
b\ o x(z?2+1) . 2

10. Let real numbers x, 7, z satisfy e* 4 eV + € = 2 + e*¥**, Find

1 1 1
lim -+ -4+ -- Trytz 11. Let a, = —nn,m > 0,A > 0, determine
(z.y,2)—(0,000 \ T Yy =z 12 n
h

the constant ¢ such that

(a;)" — max {ar}] = A

<k<m
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. 1 o xz " _4_
12 limn | | — ———dr | —e3?
n—o0 3r J, arctan(nz)

13 lim ¢y (=1)F

1,1 1
14. lim / / / sin <x1+x2+ +xn> dzridxy - - - dx,

n (_1)1%1
15. Let A, = Z , find

lim n(n(n(n(n(n(=1)"n!(e(l — A,) — 1) —€) + 2¢) — 5e) + 15¢)

n—oo

L | "
16. lim n ((/ dm) — >
n—o00 0 1 + ™ 2

17. ¢, = 3% + 1, find lim \3/6q§ + §/6q% + /- 6¢2
n—oo

ZOO (=p~-t ZOO 1 fﬁ m( Y1+t—1)sint?
n=1 n m=0 n2m+4+1 JO o ((n=1)H2(2p)2n 1 (1=2x)In(1-z) ,
DI (2n)! Jo - x

18. lim lim 5 N
2o0F Yoo 22(z — tanz) In(z2 + 1) [(7“?“5) — 1}
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m
sm 5T +sin Tx9) 4+ - +sin(Zx, o+ 2l)s
19. hHl/ / 1 (2 2) (2 ] n) dl’1dl‘n
JC1+ 562-1— +§$n) (iE + - +33n)

n—oo

20. nh_)rgoz / 51n—d:1;

(o]
21. Suppose lim z, = 400, the positive series Zyn converges, and let ng be a
n—oo

n=1

1
natural number. If when n > nq, it holds that x,, < z,.1, 2, < §(xn_1 +Zn11), Yns1 < Yn,

1
prove: lim —" = (22, lim n? (/ (1+a™)" d — 1)
n—00 Tyt — T, n—o00 0

. u 1 5
o w11 (-5 )

1
24. For a,b € R, find lim Z
o= n+k+b+vn?+kn+a

1 In(1 n+k
2. For K€ N, find (1) L = lim [ BU3F2")
n—oo [ ln(l + .CE")

() 1imn</)1m(Hmdx—L>

In(1 + an)

137



Pengbo Lu—Some Methods to Calculate Limits

[ b [ b
26. For a continuous function f : [a,b] — [0, 00), find lim n | / frti(x)dx — / f(z)dx
n—oo a a

27. Given fo(z) € R[0,1] and fo(z) > 0, with f,(z) = /fﬂ faca(®)dt (n=1,2,--+),
0
find lim f,(x)

n—oo

. Uy + 0
28. For a,b € R with 0 < a < b, uy = a, vg = b, Upp = — 5 2 Un = v/Unt1Un,
. . bsin(arccos(§))
prove: lim w, = lim v, = m
n—o00 n—oo arccos ¢

b

29. lim T

2n
n—o0 4k (k1)2
( Zk 1 2k+1)')

) . cosT
o vi([ )

31. Given u; = 0, uy = 1, Upqo = Upiy —|— , find lim Hn

nooo N/

32. Foray =1, a, = a,_1 +

, find lim @(an —V2n)

p_1 n—oo Inn
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33. Let f(2),

Prove For n € N, when n is sufficiently large, there exists z,

(2) lim z,

n—oo

34. Given x1 > 0, 41 zasn—i-nL find lim n( 33— —

Ty

D ke T oo vn

Z?_1i3(1+§)i'22_1k2\/2+ 24 V2
k12

35. lim

n—oo

In?

n?

e
36. i
oo 7 ;lnk-ln(n—k)

n o k k
37. lim Zk:l( 1) Cylnk
n—00 1n(lnn)
n—1 k n
et S =1 find lim 22
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€ [a,b] such that
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n—1
-1 1
39. Let S, = Z (—1)k<n i >2k(n+k’+1) (n > 1), find the equivalent infinitesi-
k=0

mal of S,, as n — oo

1
40. Let f : [0,1] — (0, 00) be a function such that In(f(=)) € R[0,1],and g : [0,1] = R
x

be an integrable function continuous at x = 1. Prove:

lim n? (/01 Y f (@) g(x)de — /Olg(x)d:r> =g(1) /01 lnf(x)dx

n—o00 X
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https://zhuanlan.zhihu.com/p/931322500

Ingenious Use of the Second Mean Value Theorem for Integrals

Solving Limits Using the Definition of Double Integrals. https://zhuanlan.zhihu.com/p/434912374
Solving Limits Using the Fitting Method. https://zhuanlan.zhihu.com/p/4748187315

General Form of the Toeplitz Theorem (or Treplitz Theorem), Proof, and Applications

Solving an Infinite Series Problem Using Abel’s Transformation.

23 Things About Approximation. https://zhuanlan.zhihu.com/p/130394480

A More Standard Solution to the Fifth Problem of Category A in the 14th National College Mathematics
Contest.

Piecewise Estimation - An Effective Method for Solving a Class of Limit Problems Involving Definite
Integrals. https://zhuanlan.zhihu.com/p/3127792428

Uniform Convergence: Exchanging the Order of Limits and Integrals or Derivatives.
Dominated Convergence Theorem. https://zhuanlan.zhihu.com/p/514932539
Bounded Convergence Theorem (Arzela’s Dominated Convergence Theorem).

CMC3: Beyond the Syllabus! Dominated Convergence Theorem for Solving Limits in Mathematical
Competitions.

A Popular Graduate Entrance Exam Problem Solved Using Riemann’s Lemma.

Integral Limits, Infinite Series? Riemann’s Lemma is Here!.

Riemann’s Lemma - Can We Use It Directly?.

Introduction to Special Functions - Gamma Function (Part 1). https://zhuanlan.zhihu.com/p/350992875
Stories of the Gamma Function (2) - Euler’s Constant and the Digamma Function.

Several Variations of the Beta Function and Their Simple Applications.

Properties and Applications of the Gamma and Beta Functions (Bookmark).
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A Comprehensive Integral Limit Operation (Beta Function vs. Multiple Integration by Parts).
An Excellent Limit Problem Involving the Beta Function Asked by a WeChat Friend.

The Second Question of the 16th Chinese Mathematics Competitions for University Students (Mathemat-
ics Category). https://zhuanlan.zhihu.com/p/6037720337https://zhuanlan.zhihu.com/p/6037720337

Fourier Series and Issues Related to Points of Discontinuity of the First Kind.
Mathematical Essays (V): The Ingenious Use of Fourier Series.

Fourier Series, Bernoulli Numbers, and the Residue Theorem for Solving the Convergence Value of
Infinite Series. https://zhuanlan.zhihu.com/p/680125102https://zhuanlan.zhihu.com/p/680125102

Baidu Baike. Generating Function.
Baidu Baike. Bernoulli Numbers.

How to Calculate the Sum of the p-th Powers of the First n Integers? Proof of Bernoulli’s Power Sum
Formula.

Notes on Number Theory (Part Five): Euler-Maclaurin.

How to Solve This Limit Problem?.

A Typical Limit Problem with Added Boundary Conditions.

Derivation of Taylor’s Formula with Remainder and Euler-Maclaurin Formula.
Conditions for Interchangeable Iterated Limits (Sufficient Conditions).

Daily Practice 494: A Comprehensive Calculation Problem Involving Iterated Limits and Iterated Inte-
grals.

(Notes on Mathematical Analysis) Double Limits and Iterated Limits.

How to Use Polar Coordinate Substitution When Solving Double Limits?.

The Most Powerful Solution for Double Limits - Polar Coordinate Substitution Method!!!.
Summary of Methods for Solving Limits of Multivariate Functions.

Infinite Product Expansion of sin x. https://zhuanlan.zhihu.com/p/325840033
Calculation of Definite Integrals Involving Gaussian Functions and Euler’s Constant .
Discussion on an Improper Integral. https://zhuanlan.zhihu.com/p/10041461368

An Asymptotic Estimation of the Glaisher-Kkinkelin Constant.

Do You Remember Some Commonly Used Integral Inequalities?.

Extreme 50 Questions.https://zhuanlan.zhihu.com/p/464349656

New Extreme 50 Questions.https://zhuanlan.zhihu.com/p/586648267
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